Name | Caspase-9 | ||
UniProt ID | CASP9_HUMAN | ||
Gene Name | CASP9 | ||
Gene ID | 842 | ||
Synonyms |
CASP9, APAF-3, APAF3, ICE-LAP6, MCH6, PPP1R56
|
||
Sequence |
MDEADRRLLRRCRLRLVEELQVDQLWDALLSRELFRPHMIEDIQRAGSGSRRDQARQLII
DLETRGSQALPLFISCLEDTGQDMLASFLRTNRQAAKLSKPTLENLTPVVLRPEIRKPEV LRPETPRPVDIGSGGFGDVGALESLRGNADLAYILSMEPCGHCLIINNVNFCRESGLRTR TGSNIDCEKLRRRFSSLHFMVEVKGDLTAKKMVLALLELAQQDHGALDCCVVVILSHGCQ ASHLQFPGAVYGTDGCPVSVEKIVNIFNGTSCPSLGGKPKLFFIQACGGEQKDHGFEVAS TSPEDESPGSNPEPDATPFQEGLRTFDQLDAISSLPTPSDIFVSYSTFPGFVSWRDPKSG SWYVETLDDIFEQWAHSEDLQSLLLRVANAVSVKGIYKQMPGCFNFLRKKLFFKTS |
||
Pathway Map | MAP LINK | ||
T.C. Number | 8.A.217.1.1 | ||
KEGG ID | hsa842 | ||
TTD ID | T93903 | ||
Pfam | PF00619; PF00656; PF09010; PF16739 |
Pair Name | Biochanin A, SB590885 | |||
Phytochemical Name | Biochanin A | |||
Anticancer drug Name | SB590885 | |||
Disease Info | [ICD-11: 2C12] | Hepatocellular carcinoma | Investigative | |
Regulate Info | Up-regulation | Caspase-9 | Cleavage | |
Result | The results identify an effective combination therapy for the most aggressive form of HCC and provide the possibility of therapeutic improvement for patients with advanced HCC. |
Pair Name | Calycosin-7-O-β-D-glucoside, Cisplatin | |||
Phytochemical Name | Calycosin-7-O-β-D-glucoside | |||
Anticancer drug Name | Cisplatin | |||
Disease Info | [ICD-11: 2C73] | Ovarian cancer | Investigative | |
Regulate Info | Up-regulation | Caspase-9 | Activity | |
Result | CG significantly increases the CDDP-induced apoptosis of the SK-OV-3 cells through the p53 pathway at the cellular level. In addition, using the drugs in combination reduces the toxicity and side effects caused by using CDDP alone. |
Pair Name | Chlorogenic acid, Methotrexate | |||
Phytochemical Name | Chlorogenic acid | |||
Anticancer drug Name | Methotrexate | |||
Disease Info | [ICD-11: 2B33.4] | Leukemia | Investigative | |
Regulate Info | Up-regulation | Caspase-9 | Cleavage | |
Result | These results imply that CGA has perfective effect against MTX-induced liver injury. Hence CGA supplementation might be helpful in abrogation of MTX toxicity. |
Pair Name | Eugenol, Sorafenib | |||
Phytochemical Name | Eugenol | |||
Anticancer drug Name | Sorafenib | |||
Disease Info | [ICD-11: 2D10.Z] | Thyroid cancer | Investigative | |
Regulate Info | Down-regulation | Caspase-9 | Cleavage | |
Result | The most potent apoptotic effect was achieved with sorafenib and eugenol at their IC50. Lower doses of sorafenib could be used with eugenol to improve its efficacy while reducing its side effects. |
Pair Name | Magnoflorine, Doxorubicin | |||
Phytochemical Name | Magnoflorine | |||
Anticancer drug Name | Doxorubicin | |||
Disease Info | [ICD-11: 2C60] | Breast cancer | Investigative | |
Regulate Info | Up-regulation | Caspase-9 | Cleavage | |
Result | Magnoflorine improves sensitivity to doxorubicin (DOX) of breast cancer cells via inducing apoptosis and autophagy through AKT/mTOR and p38 signaling pathways |
Pair Name | Mahanine, Cisplatin | |||
Phytochemical Name | Mahanine | |||
Anticancer drug Name | Cisplatin | |||
Disease Info | [ICD-11: 2C77] | Cervical cancer | Investigative | |
Regulate Info | Down-regulation | Caspase-9 | Cleavage | |
Result | Our results revealed that mahanine may be a prospective agent to reduce the concentration of cisplatin in adjunct for the treatment of cancer and thereby decreasing its toxicity. |
Pair Name | Narirutin, Cisplatin | |||
Phytochemical Name | Narirutin | |||
Anticancer drug Name | Cisplatin | |||
Disease Info | [ICD-11: 2C25] | Lung cancer | Investigative | |
Regulate Info | Up-regulation | Caspase-9 | Cleavage | |
Result | Based on the significant anticancer effect and high biosafety, naringin has great potential as a functional food in the adjuvant treatment of lung cancer. |
Pair Name | Oleanolic Acid, Doxorubicin | |||
Phytochemical Name | Oleanolic Acid | |||
Anticancer drug Name | Doxorubicin | |||
Disease Info | [ICD-11: 2C10] | Pancreatic cancer | Investigative | |
Regulate Info | Up-regulation | Caspase-9 | Expression | |
Result | This approach may increase the efficiency of chemotherapy and reduce unintended side effects by lowering the prescribed dose of DOX. |
Pair Name | Rutin, Oxaliplatin | |||
Phytochemical Name | Rutin | |||
Anticancer drug Name | Oxaliplatin | |||
Disease Info | [ICD-11: 2B72] | Gastric cancer | Investigative | |
Regulate Info | Up-regulation | Caspase-9 | Cleavage | |
Result | P38 Signal Transduction Pathway Has More Cofactors on Apoptosis of SGC-7901 Gastric Cancer Cells Induced by Combination of Rutin and Oxaliplatin |
Pair Name | Trifolirhizin, Sorafenib | |||
Phytochemical Name | Trifolirhizin | |||
Anticancer drug Name | Sorafenib | |||
Disease Info | [ICD-11: 2C12] | Hepatocellular carcinoma | Investigative | |
Regulate Info | Up-regulation | Caspase-9 | Activity | |
Result | Synergistic anticancer effect of flavonoids from Sophora alopecuroides with Sorafenib against hepatocellular carcinoma |
Pair Name | Vanillin, Doxorubicin | |||
Phytochemical Name | Vanillin | |||
Anticancer drug Name | Doxorubicin | |||
Disease Info | [ICD-11: 2C60] | Breast cancer | Investigative | |
Regulate Info | Up-regulation | Caspase-9 | Expression | |
Result | Vanillin can be a potential lead molecule for the development of non-toxic agents for the treatment of breast cancer either alone or combined with DOX. |
Pair Name | 2,3,5,6-Tetramethylpyrazine, Doxorubicin | |||
Phytochemical | 2,3,5,6-Tetramethylpyrazine | |||
Drug | Doxorubicin | |||
Disease Info | [ICD-11: 2C60] | Breast cancer | Investigative | |
Regulate Info | Up-regulation | Caspase-9 | Cleavage | |
Result | DLJ14 and Adr combination treatment may inhibit proliferation of Adr-resistant human breast cancer cells through inhibition of the EGFR/PI3K/Akt survival pathway and induction of apoptosis via the mitochondrial-mediated apoptosis pathway. |
Pair Name | Aloin, Irinotecan | |||
Phytochemical | Aloin | |||
Drug | Irinotecan | |||
Disease Info | [ICD-11: 2B91] | Colorectal cancer | Investigative | |
Regulate Info | Up-regulation | Caspase-9 | Cleavage | |
Result | Our findings suggests that CPT-11 and Aloin are potential combination treatment partners against colorectal cancer. MicroRNA-133b may serve as a co-therapeutic target with IGF1R against colorectal cancer, which might overcome the existing treatment limitations. |
Pair Name | Alpha-Hederin, Cisplatin | |||
Phytochemical | Alpha-Hederin | |||
Drug | Cisplatin | |||
Disease Info | [ICD-11: 2B72] | Gastric cancer | Investigative | |
Regulate Info | Up-regulation | Caspase-9 | Expression | |
Result | α-Hederin enhances cisplatin-induced anti-tumour effects in GC both in vitro and in vivo by promoting the accumulation of ROS and decreasing MMP. Our data strongly suggested that α-Hederin is a promising candidate for intervention in gastric cancer. |
Pair Name | Alpha-Hederin, Cisplatin | |||
Phytochemical | Alpha-Hederin | |||
Drug | Cisplatin | |||
Disease Info | [ICD-11: 2B72] | Gastric cancer | Investigative | |
Regulate Info | Up-regulation | Caspase-9 | Cleavage | |
Result | α-Hederin enhances cisplatin-induced anti-tumour effects in GC both in vitro and in vivo by promoting the accumulation of ROS and decreasing MMP. Our data strongly suggested that α-Hederin is a promising candidate for intervention in gastric cancer. |
Pair Name | alpha-Mangostin, TNF-related apoptosis inducing ligand | |||
Phytochemical | alpha-Mangostin | |||
Drug | TNF-related apoptosis inducing ligand | |||
Disease Info | [ICD-11: 2B66.0] | Oral squamous cell carcinoma | Investigative | |
Regulate Info | Up-regulation | Caspase-9 | Activity | |
Result | Synergism between α-mangostin and TRAIL induces apoptosis in squamous cell carcinoma of the oral cavity through the mitochondrial pathway |
Pair Name | Amentoflavone, Cisplatin | |||
Phytochemical | Amentoflavone | |||
Drug | Cisplatin | |||
Disease Info | [ICD-11: 2B66.0] | Oral squamous cell carcinoma | Investigative | |
Regulate Info | Up-regulation | Caspase-9 | Cleavage | |
Result | Inactivation of NF-κB and induction of apoptosis through intrinsic caspase-dependent and independent apoptotic pathways are associated with amentoflavone enhanced anti-OSCC efficacy of cisplatin. |
Pair Name | Amentoflavone, Sorafenib | |||
Phytochemical | Amentoflavone | |||
Drug | Sorafenib | |||
Disease Info | [ICD-11: 2C12] | Hepatocellular carcinoma | Investigative | |
Regulate Info | Down-regulation | Caspase-9 | Expression | |
Result | Our results demonstrated that amentoflavone significantly enhanced sorafenib-inhibited tumor growth and expression of ERK/AKT phosphorylation and anti-apoptotic proteins compared to single-agent treatment. Additionally, amentoflavone also triggered sorafenib-induced apoptosis through extrinsic and intrinsic apoptotic pathways. |
Pair Name | Amygdalin, Cisplatin | |||
Phytochemical | Amygdalin | |||
Drug | Cisplatin | |||
Disease Info | [ICD-11: 2C60] | Breast cancer | Investigative | |
Regulate Info | Down-regulation | Caspase-9 | Cleavage | |
Result | Our present findings suggest that amygdalin has chemo-modulatory effect when used in co-treatment with cisplatin and is able to protect normal breast cells as well as the fibroblasts during chemotherapy treatment, indicating a strong selective chemoprotective ability and may contribute to a better quality of life for cancer patients. |
Pair Name | Anacardic Acid, Bortezomib | |||
Phytochemical | Anacardic Acid | |||
Drug | Bortezomib | |||
Disease Info | [ICD-11: 2A83] | Multiple myeloma | Investigative | |
Regulate Info | Up-regulation | Caspase-9 | Cleavage | |
Result | The results of the present study suggest that AA/Bor combination may be a potential therapeutic strategy for MM treatment. |
Pair Name | Apigenin, TNF-related apoptosis inducing ligand | |||
Phytochemical | Apigenin | |||
Drug | TNF-related apoptosis inducing ligand | |||
Disease Info | [ICD-11: 2C12] | Hepatocellular carcinoma | Investigative | |
Regulate Info | Up-regulation | Caspase-9 | Cleavage | |
Result | Apigenin sensitizes cells to TRAIL-induced apoptosis by activating both intrinsic and extrinsic apoptotic pathway-related caspases. The augmented apoptotic effect by TRAIL/apigenin combination was accompanied by triggering mitochondria-dependent signaling pathway, as indicated by Bax/Bcl-2 ratio up-regulation |
Pair Name | Artesunate, Cisplatin | |||
Phytochemical | Artesunate | |||
Drug | Cisplatin | |||
Disease Info | [ICD-11: 2C25] | Lung cancer | Investigative | |
Regulate Info | Up-regulation | Caspase-9 | Expression | |
Result | ART exhibited significant anti-tumor effect on A549 cells and this efficiency could be enhanced by combination with CIS |
Pair Name | Artesunate, Metformin | |||
Phytochemical | Artesunate | |||
Drug | Metformin | |||
Disease Info | [ICD-11: 2A00] | Glioblastoma multiforme | Investigative | |
Regulate Info | Up-regulation | Caspase-9 | Expression | |
Result | The study findings suggest that MET used in combination with ART can induce autophagy-dependent apoptosis in GBM cells by activating the ROS-AMPK-mTOR pathway, providing a potential new treatment for GBM. |
Pair Name | Bakuchiol, TNF-related apoptosis inducing ligand | |||
Phytochemical | Bakuchiol | |||
Drug | TNF-related apoptosis inducing ligand | |||
Disease Info | [ICD-11: 2B91] | Colorectal cancer | Investigative | |
Regulate Info | Up-regulation | Caspase-9 | Cleavage | |
Result | The collective results suggest that bakuchiol facilitates TRAIL-induced apoptosis in colon cancer cells through up-regulation of the TRAIL receptors; DR4 and DR5 via ROS/JNK pathway signals. |
Pair Name | Berbamine, Arcyriaflavin A | |||
Phytochemical | Berbamine | |||
Drug | Arcyriaflavin A | |||
Disease Info | [ICD-11: 2A00] | Glioblastoma multiforme | Investigative | |
Regulate Info | Up-regulation | Caspase-9 | Cleavage | |
Result | Our findings suggest that a novel combination therapy involving berbamine and ArcA could effectively eradicate glioblastoma stem-like cells. |
Pair Name | Beta-Elemene, Cisplatin | |||
Phytochemical | Beta-Elemene | |||
Drug | Cisplatin | |||
Disease Info | [ICD-11: 2C25] | Lung cancer | Investigative | |
Regulate Info | Up-regulation | Caspase-9 | Cleavage | |
Result | Our data provide a rationale for developing a combination of beta-elemene and cisplatin as a regimen for the treatment of lung carcinoma and other cisplatin-resistant tumors. |
Pair Name | Beta-Elemene, Cisplatin | |||
Phytochemical | Beta-Elemene | |||
Drug | Cisplatin | |||
Disease Info | [ICD-11: 2C94] | Bladder cancer | Investigative | |
Regulate Info | Up-regulation | Caspase-9 | Cleavage | |
Result | The results of the present study suggested that β-ELE inhibited the proliferation of bladder cancer cells in vitro and enhanced cisplatin-induced mitochondria-dependent apoptosis via the ROS-AMPK signaling pathway. Combination therapy with β-ELE requires further investigation as a potential treatment of bladder cancer. |
Pair Name | Beta-Elemene, Cisplatin | |||
Phytochemical | Beta-Elemene | |||
Drug | Cisplatin | |||
Disease Info | [ICD-11: 2C82] | Prostate cancer | Investigative | |
Regulate Info | Up-regulation | Caspase-9 | Cleavage | |
Result | β-elemene enhancement of cisplatin-induced apoptosis via mitochondrial activation of the caspase-mediated apoptotic pathway may account for the augmented anti-cancer potency of cisplatin in prostate cancer. Cisplatin combined with β-elemene as a chemosensitizer or adjuvant warrants further study and may be potentially useful as a first-line treatment of androgen-independent prostate carcinomas. |
Pair Name | Beta-Elemene, Cisplatin | |||
Phytochemical | Beta-Elemene | |||
Drug | Cisplatin | |||
Disease Info | [ICD-11: 2C94] | Bladder cancer | Investigative | |
Regulate Info | Up-regulation | Caspase-9 | Activity | |
Result | Cisplatin combined with β-elemene as a chemosensitizer warrants further pre-clinical therapeutic studies and may be useful for the treatment of cisplatin-resistant bladder cancer and other types of carcinomas. |
Pair Name | Beta-Elemene, Cisplatin | |||
Phytochemical | Beta-Elemene | |||
Drug | Cisplatin | |||
Disease Info | [ICD-11: 2C73] | Ovarian cancer | Investigative | |
Regulate Info | Up-regulation | Caspase-9 | Cleavage | |
Result | These data indicate that β-elemene sensitizes chemoresistant ovarian carcinoma cells to cisplatin-induced apoptosis and that the augmented effect of β-elemene on cisplatin cytotoxicity and sensitivity in resistant ovarian tumor cells is mediated through a mitochondria- and caspase-dependent cell death pathway. |
Pair Name | Betulin, Arsenic oxide (As2O3) | |||
Phytochemical | Betulin | |||
Drug | Arsenic oxide (As2O3) | |||
Disease Info | [ICD-11: 2D11] | Neuroblastoma | Investigative | |
Regulate Info | Up-regulation | Caspase-9 | Cleavage | |
Result | The novel combination of As2O3 plus betulin has the potential to serve as a practical anti-neuroblastoma drug. |
Pair Name | Betulinic acid, Imatinib | |||
Phytochemical | Betulinic acid | |||
Drug | Imatinib | |||
Disease Info | [ICD-11: 2B33.2] | Chronic myeloid leukemia | Investigative | |
Regulate Info | Up-regulation | Caspase-9 | Cleavage | |
Result | Our findings demonstrated that HDAC3 is an essential factor in BCR-ABL1 kinase-independent IM resistance, and that BA in combination with IM may be a novel treatment strategy for overcoming IM resistance in CML. |
Pair Name | Bisdemethoxycucurmin, Rapamycin | |||
Phytochemical | Bisdemethoxycucurmin | |||
Drug | Rapamycin | |||
Disease Info | [ICD-11: 2C60] | Breast cancer | Investigative | |
Regulate Info | Up-regulation | Caspase-9 | Cleavage | |
Result | Bisdemethoxycurcumin Promotes Apoptosis and Inhibits the Epithelial-Mesenchymal Transition through the Inhibition of the G-Protein-Coupled Receptor 161/Mammalian Target of Rapamycin Signaling Pathway in Triple Negative Breast Cancer Cells. |
Pair Name | Bufalin, Sorafenib | |||
Phytochemical | Bufalin | |||
Drug | Sorafenib | |||
Disease Info | [ICD-11: 2C25] | Lung cancer | Investigative | |
Regulate Info | Up-regulation | Caspase-9 | Expression | |
Result | Sorafenib in combination with bufalin shows more potent cytotoxic effects and cell apoptosis than sorafenib or bufalin treatment alone in NCI-H292 cells. The combined treatment significantly enhanced apoptotic cell death in NCI-H292 lung cancer cells by activating ROS-, mitochondria-, and caspase-signaling pathways in vitro. |
Pair Name | Caffeic acid, Paclitaxel | |||
Phytochemical | Caffeic acid | |||
Drug | Paclitaxel | |||
Disease Info | [ICD-11: 2C25] | Lung cancer | Investigative | |
Regulate Info | Up-regulation | Caspase-9 | Expression | |
Result | Our results indicated that CA inhibited NSCLC H1299 cell growth by inducing apoptosis and CA and PTX combined produced a synergistic anti-cancer effect in H1299 cells. |
Pair Name | Camptothecin, Rapamycin | |||
Phytochemical | Camptothecin | |||
Drug | Rapamycin | |||
Disease Info | [ICD-11: 2C73] | Ovarian cancer | Investigative | |
Regulate Info | Up-regulation | Caspase-9 | Activity | |
Result | Autophagy-induced intracellular signaling fractional nano-drug system for synergistic anti-tumor therapy |
Pair Name | Casticin, Fluorouracil | |||
Phytochemical | Casticin | |||
Drug | Fluorouracil | |||
Disease Info | [ICD-11: 2B33.4] | Leukemia | Investigative | |
Regulate Info | Up-regulation | Caspase-9 | Activity | |
Result | We may suggest that 5-FU combined with casticin treatment increased apoptotic cell death in WEHI-3 mouse leukemia cells that may undergo mitochondria and caspases signaling pathways in vitro. |
Pair Name | Chrysin, Cisplatin | |||
Phytochemical | Chrysin | |||
Drug | Cisplatin | |||
Disease Info | [ICD-11: 2C12] | Hepatocellular carcinoma | Investigative | |
Regulate Info | Up-regulation | Caspase-9 | Cleavage | |
Result | Our results suggest that combination of chrysin and cisplatin is a promising strategy for chemotherapy of human cancers that are resistant to cisplatin. |
Pair Name | Cianidanol, Fluorouracil | |||
Phytochemical | Cianidanol | |||
Drug | Fluorouracil | |||
Disease Info | [ICD-11: 2B72] | Gastric cancer | Investigative | |
Regulate Info | Up-regulation | Caspase-9 | Cleavage | |
Result | We suggest catechin as a candidate for the development of a novel adjuvant drug that reduces chemoresistance to 5FU by restricting LDHA. |
Pair Name | Corylin, Etoposide | |||
Phytochemical | Corylin | |||
Drug | Etoposide | |||
Disease Info | [ICD-11: 2C12] | Hepatocellular carcinoma | Investigative | |
Regulate Info | Up-regulation | Caspase-9 | Cleavage | |
Result | Corylin increases the sensitivity of hepatocellular carcinoma cells to chemotherapy through long noncoding RNA RAD51-AS1-mediated inhibition of DNA repair |
Pair Name | Cryptotanshinone, Trifluridine | |||
Phytochemical | Cryptotanshinone | |||
Drug | Trifluridine | |||
Disease Info | [ICD-11: 2B72] | Gastric cancer | Investigative | |
Regulate Info | Up-regulation | Caspase-9 | Expression | |
Result | FTD combined with CTS has a synergistic anti-gastric cancer effect as shown by in vitro and in vivo experiments, and the combined treatment of FTD and CTS will be a promising treatment option for advanced gastric cancer. |
Pair Name | Cucurbitacin B, Sorafenib | |||
Phytochemical | Cucurbitacin B | |||
Drug | Sorafenib | |||
Disease Info | [ICD-11: 2C12] | Hepatocellular carcinoma | Investigative | |
Regulate Info | Up-regulation | Caspase-9 | Cleavage | |
Result | Sorafenib and CuB exert synergistic antitumor effects through a pathway that may involve STAT3 phosphorylation, and this may represent a promising therapeutic approach for treatment of HCC. |
Pair Name | Curcumin, Docetaxel | |||
Phytochemical | Curcumin | |||
Drug | Docetaxel | |||
Disease Info | [ICD-11: 2B70] | Esophageal cancer | Investigative | |
Regulate Info | Up-regulation | Caspase-9 | Cleavage | |
Result | CUR combined with DTX induced apoptosis and autophagy of ESCC and probably worked through the PI3K/AKT/mTOR signaling pathway. The combination of the autophagy inhibitor, CUR and DTX may become a new treatment strategy for esophageal cancer. |
Pair Name | Curcumin, Melphalan | |||
Phytochemical | Curcumin | |||
Drug | Melphalan | |||
Disease Info | [ICD-11: 2C60] | Breast cancer | Investigative | |
Regulate Info | Up-regulation | Caspase-9 | Expression | |
Result | Curcumin and melphalan cotreatment induces cell cycle arrest and apoptosis in MDA-MB-231 breast cancer cells |
Pair Name | Curcumin, TNF-related apoptosis inducing ligand | |||
Phytochemical | Curcumin | |||
Drug | TNF-related apoptosis inducing ligand | |||
Disease Info | [ICD-11: 2C25] | Lung cancer | Investigative | |
Regulate Info | Up-regulation | Caspase-9 | Cleavage | |
Result | Combined treatment with curcumin and carboplatin inhibited tumor cell growth, migration, and invasion compared with either drug alone. The synergistic antitumor activity of curcumin combined with carboplatin is mediated by multiple mechanisms involving suppression of NF-kappaB via inhibition of the Akt/IKKalpha pathway and enhanced ERK1/2 activity |
Pair Name | Curcumin, TRAIL/Apo2L | |||
Phytochemical | Curcumin | |||
Drug | TRAIL/Apo2L | |||
Disease Info | [ICD-11: 2C73] | Ovarian cancer | Investigative | |
Regulate Info | Up-regulation | Caspase-9 | Cleavage | |
Result | Combined curcumin and Apo2L/TRAIL treatment results in enhanced induction of apoptotic cell death. Because curcumin and Apo2L/TRAIL together can activate both the extrinsic and intrinsic pathways of apoptosis, they may circumvent chemoresistance to conventional chemotherapeutic agents. |
Pair Name | Daurinoline, Sorafenib | |||
Phytochemical | Daurinoline | |||
Drug | Sorafenib | |||
Disease Info | [ICD-11: 2C12] | Hepatocellular carcinoma | Investigative | |
Regulate Info | Up-regulation | Caspase-9 | Cleavage | |
Result | Our study provides insights into the molecular mechanisms underlying DS-induced inhibition of VM, which may facilitate the development of a novel clinical anti-HCC drug. Moreover, our findings suggest that the combination of DS and sorafenib constitutes a potential therapeutic strategy for HCC. |
Pair Name | Decursin, Doxorubicin | |||
Phytochemical | Decursin | |||
Drug | Doxorubicin | |||
Disease Info | [ICD-11: 2A83] | Multiple myeloma | Investigative | |
Regulate Info | Up-regulation | Caspase-9 | Activity | |
Result | The combination treatment of decursin and doxorubicin can enhance apoptotic activity via mTOR and/or STAT3 signaling pathway in multiple myeloma cells. |
Pair Name | Dehydrobruceine B, Cisplatin | |||
Phytochemical | Dehydrobruceine B | |||
Drug | Cisplatin | |||
Disease Info | [ICD-11: 2C25] | Lung cancer | Investigative | |
Regulate Info | Up-regulation | Caspase-9 | Cleavage | |
Result | These results generated a rationale for further investigation of DHB combined with CDDP as a potential therapeutic strategy in lung cancer. |
Pair Name | Delta-Tocotrienol, Cisplatin | |||
Phytochemical | Delta-Tocotrienol | |||
Drug | Cisplatin | |||
Disease Info | [ICD-11: 2C73] | Ovarian cancer | Investigative | |
Regulate Info | Up-regulation | Caspase-9 | Cleavage | |
Result | δ-Tocotrienol sensitizes and re-sensitizes ovarian cancer cells to cisplatin via induction of G1 phase cell cycle arrest and ROS/MAPK-mediated apoptosis |
Pair Name | Dihydroartemisinin, Doxorubicin | |||
Phytochemical | Dihydroartemisinin | |||
Drug | Doxorubicin | |||
Disease Info | [ICD-11: 2C60] | Breast cancer | Investigative | |
Regulate Info | Up-regulation | Caspase-9 | Cleavage | |
Result | This study presented a new opportunity to enhance the effectiveness of future treatment regimens of breast cancer using DOX. |
Pair Name | Dihydroartemisinin, Doxorubicin | |||
Phytochemical | Dihydroartemisinin | |||
Drug | Doxorubicin | |||
Disease Info | [ICD-11: 2A81] | Primary effusion lymphoma | Investigative | |
Regulate Info | Up-regulation | Caspase-9 | Cleavage | |
Result | DHA is a potentially effective candidate drug for PEL treatment. |
Pair Name | Epigallocatechin gallate, TNF-related apoptosis inducing ligand | |||
Phytochemical | Epigallocatechin gallate | |||
Drug | TNF-related apoptosis inducing ligand | |||
Disease Info | [ICD-11: 2C82] | Prostate cancer | Investigative | |
Regulate Info | Down-regulation | Caspase-9 | Expression | |
Result | EGCG sensitizes human prostate carcinoma LNCaP cells to TRAIL-mediated apoptosis and synergistically inhibits biomarkers associated with angiogenesis and metastasis |
Pair Name | Epigallocatechin gallate, TNF-related apoptosis inducing ligand | |||
Phytochemical | Epigallocatechin gallate | |||
Drug | TNF-related apoptosis inducing ligand | |||
Disease Info | [ICD-11: 2B6B] | Nasopharyngeal carcinoma | Investigative | |
Regulate Info | Up-regulation | Caspase-9 | Activity | |
Result | EGCG sensitizes NPC cells to TRAIL-mediated apoptosis via modulation of extrinsic and intrinsic apoptotic pathways and inhibition of NF-κB activation. |
Pair Name | Eugenol, Cisplatin | |||
Phytochemical | Eugenol | |||
Drug | Cisplatin | |||
Disease Info | [ICD-11: 2C77] | Cervical cancer | Investigative | |
Regulate Info | Up-regulation | Caspase-9 | Expression | |
Result | Eugenol showed antiproliferative and cytotoxic effects via apoptosis and also synergism with cisplatin and ionizing radiation in the human cervical cancer cell line. |
Pair Name | Eugenol, Cisplatin | |||
Phytochemical | Eugenol | |||
Drug | Cisplatin | |||
Disease Info | [ICD-11: 2C60] | Breast cancer | Investigative | |
Regulate Info | Up-regulation | Caspase-9 | Cleavage | |
Result | These results provide strong preclinical justification for combining cisplatin with eugenol as therapeutic approach for triple-negative breast cancers through targeting the resistant ALDH-positive cells and inhibiting the NF-κB pathway. |
Pair Name | Evodiamine, Doxorubicin | |||
Phytochemical | Evodiamine | |||
Drug | Doxorubicin | |||
Disease Info | [ICD-11: 2C60] | Breast cancer | Investigative | |
Regulate Info | Up-regulation | Caspase-9 | Activity | |
Result | Our results indicated that EVO enhanced the apoptotic action of DOX by inhibiting the Ras/MEK/ERK cascade and the expression of IAPs without inhibiting the expression and activity of P-glycoprotein (P-gp). Taken together, our data indicate that EVO, a natural product, may be useful applied alone or in combination with DOX for the treatment of resistant breast cancer. |
Pair Name | Furanodiene, Doxorubicin | |||
Phytochemical | Furanodiene | |||
Drug | Doxorubicin | |||
Disease Info | [ICD-11: 2C60] | Breast cancer | Investigative | |
Regulate Info | Up-regulation | Caspase-9 | Cleavage | |
Result | These results indicate that furanodiene may be a promising and safety natural agent for cancer adjuvant therapy in the future. |
Pair Name | Gambogenic acid, Fluorouracil | |||
Phytochemical | Gambogenic acid | |||
Drug | Fluorouracil | |||
Disease Info | [ICD-11: 2C25] | Lung cancer | Investigative | |
Regulate Info | Up-regulation | Caspase-9 | Expression | |
Result | These mechanisms may be due to the toxicity of targeted toxin to mitochondria via the mitochondrial pathway. |
Pair Name | Gambogic Acid, Chloroquine | |||
Phytochemical | Gambogic Acid | |||
Drug | Chloroquine | |||
Disease Info | [ICD-11: 2C10.0] | Pancreatic ductal adenocarcinoma | Investigative | |
Regulate Info | Up-regulation | Caspase-9 | Cleavage | |
Result | Gambogic acid induces autophagy and combines synergistically with chloroquine to suppress pancreatic cancer by increasing the accumulation of reactive oxygen species |
Pair Name | Gambogic acid, Cisplatin | |||
Phytochemical | Gambogic acid | |||
Drug | Cisplatin | |||
Disease Info | [ICD-11: 2B51] | Osteosarcoma | Investigative | |
Regulate Info | Up-regulation | Caspase-9 | Expression | |
Result | GA could increase the chemotherapeutic effect of CDDP in human osteosarcoma treatment through inducing the cell cycle arrest and promoting cell apoptosis |
Pair Name | Gambogic Acid, Cisplatin | |||
Phytochemical | Gambogic Acid | |||
Drug | Cisplatin | |||
Disease Info | [ICD-11: 2C25] | Lung cancer | Investigative | |
Regulate Info | Up-regulation | Caspase-9 | Cleavage | |
Result | Gambogic acid sensitises lung cancer cells to CDDP in vitro and in vivo in NSCLC through inactivation of NF-κB and MAPK/HO-1 signalling pathways, providing a rationale for the combined use of CDDP and GA in lung cancer chemotherapy. |
Pair Name | Gambogic Acid, Doxorubicin | |||
Phytochemical | Gambogic Acid | |||
Drug | Doxorubicin | |||
Disease Info | [ICD-11: 2C25] | Lung cancer | Investigative | |
Regulate Info | Up-regulation | Caspase-9 | Cleavage | |
Result | These findings indicate that GA sensitizes lung cancer cells to ADM in vitro and in vivo, providing a rationale for the combined use of GA and ADM in lung cancer chemotherapy. |
Pair Name | Gambogic Acid, Gemcitabine | |||
Phytochemical | Gambogic Acid | |||
Drug | Gemcitabine | |||
Disease Info | [ICD-11: 2C10] | Pancreatic cancer | Investigative | |
Regulate Info | Up-regulation | Caspase-9 | Expression | |
Result | These results demonstrate that gambogic acid sensitizes pancreatic cancer cells to gemcitabine in vitro and in vivo by inhibiting the activation of the ERK/E2F1/RRM2 signaling pathway. The results also indicate that gambogic acid treatment combined with gemcitabine might be a promising chemotherapy strategy for pancreatic cancer. |
Pair Name | Gamma-Tocotrienol, Docetaxel | |||
Phytochemical | Gamma-Tocotrienol | |||
Drug | Docetaxel | |||
Disease Info | [ICD-11: 2B66.Z] | Oral cancer | Investigative | |
Regulate Info | Up-regulation | Caspase-9 | Activity | |
Result | These findings suggest that the combination treatment with these agents may provide enhanced therapeutic response in oral cancer patients, while avoiding the toxicity associated with high-dose β-tubulin stabilization monotherapy. |
Pair Name | Gamma-Tocotrienol, Gemcitabine | |||
Phytochemical | Gamma-Tocotrienol | |||
Drug | Gemcitabine | |||
Disease Info | [ICD-11: 2C10] | Pancreatic cancer | Investigative | |
Regulate Info | Up-regulation | Caspase-9 | Activity | |
Result | Our findings suggest that γ-T3 can inhibit the growth of human pancreatic tumors and sensitize them to gemcitabine by suppressing NF-κB-mediated inflammatory pathways linked to tumorigenesis. |
Pair Name | Ginsenoside Rg1, Doxorubicin | |||
Phytochemical | Ginsenoside Rg1 | |||
Drug | Doxorubicin | |||
Disease Info | [ICD-11: 2C60] | Breast cancer | Investigative | |
Regulate Info | Up-regulation | Caspase-9 | Expression | |
Result | The present results support the chemosensitizing property of ginsenoside Rg1 in triple-negative breast cancer cell lines. |
Pair Name | Ginsenoside Rg5, Paclitaxel | |||
Phytochemical | Ginsenoside Rg5 | |||
Drug | Paclitaxel | |||
Disease Info | [ICD-11: 2C77] | Cervical cancer | Investigative | |
Regulate Info | Up-regulation | Caspase-9 | Activity | |
Result | Ginsenoside Rg5 Sensitizes Paclitaxel-Resistant Human Cervical-Adeno-Carcinoma Cells to Paclitaxel-And Enhances the Anticancer Effect of Paclitaxel |
Pair Name | Glabridin, Paclitaxel | |||
Phytochemical | Glabridin | |||
Drug | Paclitaxel | |||
Disease Info | [ICD-11: 2C60] | Breast cancer | Investigative | |
Regulate Info | Up-regulation | Caspase-9 | Cleavage | |
Result | Glabridin plays dual action to intensify anti-metastatic potential of paclitaxel via impeding CYP2C8 in liver and CYP2J2/EETs in tumor of an orthotopic mouse model of breast cancer |
Pair Name | Glucosinalbate, Doxorubicin | |||
Phytochemical | Glucosinalbate | |||
Drug | Doxorubicin | |||
Disease Info | [ICD-11: 2C90] | Ehrlich ascites carcinoma | Investigative | |
Regulate Info | Up-regulation | Caspase-9 | Expression | |
Result | The present study clearly suggested therapeutic benefit of I3C in combination with DOX by augmenting anticancer efficacy and diminishing toxicity to the host. |
Pair Name | Gossypol, Doxorubicin | |||
Phytochemical | Gossypol | |||
Drug | Doxorubicin | |||
Disease Info | [ICD-11: 2B5A] | Biphasic synovial sarcoma | Investigative | |
Regulate Info | Up-regulation | Caspase-9 | Cleavage | |
Result | Combination therapy with L gossypol and low-concentration doxorubicin inhibited cell proliferation and induced apoptosis in SW982 HSSCs at a significantly greater level compared with either treatment alone |
Pair Name | Gossypol, Ponatinib | |||
Phytochemical | Gossypol | |||
Drug | Ponatinib | |||
Disease Info | [ICD-11: 2A00-2F9Z] | Solid tumour or cancer | Investigative | |
Regulate Info | Up-regulation | Caspase-9 | Expression | |
Result | Gossypol could be used as an adjuvant medication for ponatinib in cancer treatment, possibly leading to successful dose reductions and fewer side effects; however, further research is needed before a clinical application could be feasible. |
Pair Name | Gynostemma Extract, Fluorouracil | |||
Phytochemical | Gynostemma Extract | |||
Drug | Fluorouracil | |||
Disease Info | [ICD-11: 2B91] | Colorectal cancer | Investigative | |
Regulate Info | Up-regulation | Caspase-9 | Cleavage | |
Result | Gypenosides Synergistically Enhances the Anti-Tumor Effect of 5-Fluorouracil on Colorectal Cancer In Vitro and In Vivo: A Role for Oxidative Stress-Mediated DNA Damage and p53 Activation |
Pair Name | Hesperetin, Cisplatin | |||
Phytochemical | Hesperetin | |||
Drug | Cisplatin | |||
Disease Info | [ICD-11: 2B72] | Gastric cancer | Investigative | |
Regulate Info | Up-regulation | Caspase-9 | Cleavage | |
Result | Hesperetin could inhibit the phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/AKT signaling pathway and induce the mitochondrial pathway via upregulating PTEN expression, thereby significantly enhancing DDP's anti-tumor effect on GC |
Pair Name | Hispidulin, Temozolomide | |||
Phytochemical | Hispidulin | |||
Drug | Temozolomide | |||
Disease Info | [ICD-11: 2A00] | Glioblastoma multiforme | Investigative | |
Regulate Info | Up-regulation | Caspase-9 | Cleavage | |
Result | These results collectively suggested that the combination of hispidulin and TMZ could improve the antitumor efficiency of TMZ against malignant gliomas. |
Pair Name | Homoharringtonine, Suberoylanilide hydroxamic acid (SAHA) | |||
Phytochemical | Homoharringtonine | |||
Drug | Suberoylanilide hydroxamic acid (SAHA) | |||
Disease Info | [ICD-11: 2A60.Z] | Acute myeloid leukemia | Investigative | |
Regulate Info | Up-regulation | Caspase-9 | Activity | |
Result | The synergistic effect between HHT and SAHA was blocked partially using a specific anti‑TRAIL antibody. The combination therapy was also found to significantly inhibit the growth of leukemia xenografts in vivo with enhanced apoptosis. These results indicate that, by regulating the induction of TRAIL and activation of the TRAIL apoptotic pathway, it is possible to administer HHT at low concentrations in combination with SAHA as an effective therapeutic approach for the treatment of AML. |
Pair Name | Hyaluronic acid, Doxorubicin | |||
Phytochemical | Hyaluronic acid | |||
Drug | Doxorubicin | |||
Disease Info | [ICD-11: 2C60] | Breast cancer | Investigative | |
Regulate Info | Up-regulation | Caspase-9 | Cleavage | |
Result | This multifunctional nanoparticle system could deliver R848 and DOX respectively to tumor microenvironment and breast cancer cells to achieve synergistic effects of immunotherapy and chemotherapy against breast cancer. |
Pair Name | Hypericin, Gemcitabine | |||
Phytochemical | Hypericin | |||
Drug | Gemcitabine | |||
Disease Info | [ICD-11: 2C10] | Pancreatic cancer | Investigative | |
Regulate Info | Up-regulation | Caspase-9 | Cleavage | |
Result | We demonstrated that Gem combined HY-PDT could inhibit the proliferation of Capan-2 cells and induce cell apoptosis. HY-PDT combined with Gem had a great potential on pancreatic cancer treatment clinically. |
Pair Name | Icariin, Fluorouracil | |||
Phytochemical | Icariin | |||
Drug | Fluorouracil | |||
Disease Info | [ICD-11: 2B91] | Colorectal cancer | Investigative | |
Regulate Info | Up-regulation | Caspase-9 | Cleavage | |
Result | We suggest that combination of icariin with 5-FU might offer a therapeutic benefit to the patients with CRC; however, further studies are required to ascertain this proposition. |
Pair Name | Irigenin, TNF-related apoptosis inducing ligand | |||
Phytochemical | Irigenin | |||
Drug | TNF-related apoptosis inducing ligand | |||
Disease Info | [ICD-11: 2B72] | Gastric cancer | Investigative | |
Regulate Info | Up-regulation | Caspase-9 | Cleavage | |
Result | Our present study gave new insights into the effects of Iri on potentiating TRAIL-sensitivity, and suggested that Iri could be a potential candidate for sensitizer of TRAIL-resistant cancer cell treatment. |
Pair Name | Kaempferol, Erlotinib | |||
Phytochemical | Kaempferol | |||
Drug | Erlotinib | |||
Disease Info | [ICD-11: 2C10] | Pancreatic cancer | Investigative | |
Regulate Info | Up-regulation | Caspase-9 | Cleavage | |
Result | These data imply that KAE may be a valid therapeutic candidate to potentiate PC cell sensitivity to ERL via inhibiting PI3K/AKT and EGFR signaling. |
Pair Name | Liquiritin, TNF-related apoptosis inducing ligand | |||
Phytochemical | Liquiritin | |||
Drug | TNF-related apoptosis inducing ligand | |||
Disease Info | [ICD-11: 2B72] | Gastric cancer | Investigative | |
Regulate Info | Up-regulation | Caspase-9 | Cleavage | |
Result | Combining TRAIL and liquiritin exerts synergistic effects against human gastric cancer cells and xenograft in nude mice through potentiating apoptosis and ROS generation |
Pair Name | Luteolin, Cisplatin | |||
Phytochemical | Luteolin | |||
Drug | Cisplatin | |||
Disease Info | [ICD-11: 2B72] | Gastric cancer | Investigative | |
Regulate Info | Up-regulation | Caspase-9 | Expression | |
Result | These findings indicate the anti-proliferative and chemosensitizing effects of luteolin on human gastric cancer AGS cells and luteolin may be a promising candidate agent used in the treatment of gastric cancer. |
Pair Name | Luteolin, Paclitaxel | |||
Phytochemical | Luteolin | |||
Drug | Paclitaxel | |||
Disease Info | [ICD-11: 2B70] | Esophageal cancer | Investigative | |
Regulate Info | Up-regulation | Caspase-9 | Cleavage | |
Result | The molecular mechanism of inhibiting cell migration and EMT processes may be related to the inhibition of SIRT1, and the mechanism of apoptosis induction is associated with the reactive oxygen species (ROS)/c-Jun N-terminal kinase (JNK) pathway-mediated activation of mitochondrial apoptotic pathway. |
Pair Name | Luteolin, TNF-related apoptosis inducing ligand | |||
Phytochemical | Luteolin | |||
Drug | TNF-related apoptosis inducing ligand | |||
Disease Info | [ICD-11: 2C25] | Lung cancer | Investigative | |
Regulate Info | Up-regulation | Caspase-9 | Cleavage | |
Result | Data from this study thus provide strong in vivo evidence supporting that luteolin is a potential sensitizer for TRAIL in anticancer therapy. |
Pair Name | Magnolin, B-RAF Inhibitors | |||
Phytochemical | Magnolin | |||
Drug | B-RAF Inhibitors | |||
Disease Info | [ICD-11: 2C12] | Hepatocellular carcinoma | Investigative | |
Regulate Info | Up-regulation | Caspase-9 | Cleavage | |
Result | Synergistic activity of magnolin combined with B-RAF inhibitor SB590885 in hepatocellular carcinoma cells via targeting PI3K-AKT/mTOR and ERK MAPK pathway |
Pair Name | Medicarpin, TNF-related apoptosis inducing ligand | |||
Phytochemical | Medicarpin | |||
Drug | TNF-related apoptosis inducing ligand | |||
Disease Info | [ICD-11: 2B33.1] | Myeloid leukemia | Investigative | |
Regulate Info | Up-regulation | Caspase-9 | Cleavage | |
Result | Medicarpin, a legume phytoalexin sensitizes myeloid leukemia cells to TRAIL-induced apoptosis through the induction of DR5 and activation of the ROS-JNK-CHOP pathway |
Pair Name | Morin Hydrate, Cisplatin | |||
Phytochemical | Morin Hydrate | |||
Drug | Cisplatin | |||
Disease Info | [ICD-11: 2C12] | Hepatocellular carcinoma | Investigative | |
Regulate Info | Up-regulation | Caspase-9 | Expression | |
Result | Our findings indicate that CP-Mh in combination served as a prominent regulator of autophagy and significant inducer of apoptosis that maintains a homeostatic balance towards HepG2 cells and the subcutaneous tumor model. |
Pair Name | Morin, Auranofin | |||
Phytochemical | Morin | |||
Drug | Auranofin | |||
Disease Info | [ICD-11: 2C12] | Hepatocellular carcinoma | Investigative | |
Regulate Info | Down-regulation | Caspase-9 | Expression | |
Result | This study provides evidence that morin can enhance the anticancer activity of AF in Hep3B human hepatocellular carcinoma cells, indicating that its combination could be an alternative treatment strategy for the hepatocellular carcinoma. |
Pair Name | Naringenin, AMG-951 | |||
Phytochemical | Naringenin | |||
Drug | AMG-951 | |||
Disease Info | [ICD-11: 2F7Z] | Glioma | Investigative | |
Regulate Info | Up-regulation | Caspase-9 | Cleavage | |
Result | The present study provides a novel therapeutic strategy for glioma by potentiating APO2L-induced apoptosis via the combination with NG in glioma tumor cells. |
Pair Name | Naringenin, Diosmin | |||
Phytochemical | Naringenin | |||
Drug | Diosmin | |||
Disease Info | [ICD-11: 2B90] | Colon cancer | Investigative | |
Regulate Info | Up-regulation | Caspase-9 | Expression | |
Result | Diosmin in combination with naringenin enhances apoptosis in colon cancer cells |
Pair Name | Neobavaisoflavone, TNF-related apoptosis inducing ligand | |||
Phytochemical | Neobavaisoflavone | |||
Drug | TNF-related apoptosis inducing ligand | |||
Disease Info | [ICD-11: 2F7Z] | Glioma | Investigative | |
Regulate Info | Up-regulation | Caspase-9 | Activity | |
Result | Taken together, our results suggest that NBIF reduces the resistance of cancer cells to TRAIL and that the combination of NBIF and TRAIL may be a new therapeutic strategy for treating TRAIL-resistant glioma cells. |
Pair Name | Nobiletin, Vorinostat | |||
Phytochemical | Nobiletin | |||
Drug | Vorinostat | |||
Disease Info | [ICD-11: 2C25] | Lung cancer | Investigative | |
Regulate Info | Up-regulation | Caspase-9 | Cleavage | |
Result | The combination of nobiletin with vorinostat increased histone H3K9 and H3K27 acetylation levels in SCLC mouse tumor tissue and enhanced the expression of the BH3-only proteins BIM and BID. We conclude that nobiletin is a novel natural BH3 mimetic that can cooperate with vorinostat to induce apoptosis and autophagy in SCLC. |
Pair Name | Noscapine, Cisplatin | |||
Phytochemical | Noscapine | |||
Drug | Cisplatin | |||
Disease Info | [ICD-11: 2C25] | Lung cancer | Investigative | |
Regulate Info | Up-regulation | Caspase-9 | Cleavage | |
Result | Our results suggest that Nos enhanced the anticancer activity of Cis in an additive to synergistic manner by activating multiple signaling pathways including apoptosis. These findings suggest potential benefit for use of Nos and Cis combination in treatment of lung cancer. |
Pair Name | Noscapine, Cisplatin | |||
Phytochemical | Noscapine | |||
Drug | Cisplatin | |||
Disease Info | [ICD-11: 2C25] | Lung cancer | Investigative | |
Regulate Info | Up-regulation | Caspase-9 | Expression | |
Result | Our results suggest that Nos enhanced the anticancer activity of Cis in an additive to synergistic manner by activating multiple signaling pathways including apoptosis. These findings suggest potential benefit for use of Nos and Cis combination in treatment of lung cancer. |
Pair Name | Noscapine, Doxorubicin | |||
Phytochemical | Noscapine | |||
Drug | Doxorubicin | |||
Disease Info | [ICD-11: 2C60] | Breast cancer | Investigative | |
Regulate Info | Up-regulation | Caspase-9 | Expression | |
Result | Noscapine potentiated the anticancer activity of Doxorubicin in a synergistic manner against TNBC tumors via inactivation of NF-KB and anti-angiogenic pathways while stimulating apoptosis. These findings suggest potential benefit for use of oral Noscapine and Doxorubicin combination therapy for treatment of more aggressive TNBC. |
Pair Name | Noscapine, Gemcitabine | |||
Phytochemical | Noscapine | |||
Drug | Gemcitabine | |||
Disease Info | [ICD-11: 2C25] | Lung cancer | Investigative | |
Regulate Info | Up-regulation | Caspase-9 | Expression | |
Result | Nos potentiated the anticancer activity of Gem in an additive to synergistic manner against lung cancer via antiangiogenic and apoptotic pathways. These findings suggest potential benefit for use of NGC chemotherapy for treatment of lung cancer. |
Pair Name | Oleandrin, Cisplatin | |||
Phytochemical | Oleandrin | |||
Drug | Cisplatin | |||
Disease Info | [ICD-11: 2B51] | Osteosarcoma | Investigative | |
Regulate Info | Up-regulation | Caspase-9 | Cleavage | |
Result | The combination of oleandrin with cisplatin exerts a synergistic antitumor effect in osteosarcoma, which relates to the activation of the p38 MAPK pathway. |
Pair Name | OSW-1, Carboplatin | |||
Phytochemical | OSW-1 | |||
Drug | Carboplatin | |||
Disease Info | [ICD-11: 2C60] | Breast cancer | Investigative | |
Regulate Info | Up-regulation | Caspase-9 | Expression | |
Result | Our data revealed the mode of action and molecular mechanism underlying the effect of OSW-1 against TNBC, and provided a useful guidance for improving the sensitivity of TNBC cells to conventional chemotherapeutic drugs, which warrants further investigation. |
Pair Name | Oxyresveratrol, Dacarbazine | |||
Phytochemical | Oxyresveratrol | |||
Drug | Dacarbazine | |||
Disease Info | [ICD-11: 2C30] | Melanoma | Investigative | |
Regulate Info | Up-regulation | Caspase-9 | Expression | |
Result | This combination treatment may serve as a novel therapeutic strategy for treating malignant melanoma. |
Pair Name | Panaxadiol, Irinotecan | |||
Phytochemical | Panaxadiol | |||
Drug | Irinotecan | |||
Disease Info | [ICD-11: 2B91] | Colorectal cancer | Investigative | |
Regulate Info | Up-regulation | Caspase-9 | Activity | |
Result | Data from this study suggested that caspase-3- and caspase-9-mediated apoptosis may play an important role in the panaxadiol enhanced antiproliferative effects of irinotecan on human colorectal cancer cells. |
Pair Name | Parthenolide, Balsalazide | |||
Phytochemical | Parthenolide | |||
Drug | Balsalazide | |||
Disease Info | [ICD-11: 2B90] | Colon cancer | Investigative | |
Regulate Info | Down-regulation | Caspase-9 | Expression | |
Result | These results demonstrate that parthenolide potentiates the efficacy of balsalazide through synergistic inhibition of NF-κB activation and the combination of dual agents prevents colon carcinogenesis from chronic inflammation. |
Pair Name | Patchouli alcohol, Vincristine | |||
Phytochemical | Patchouli alcohol | |||
Drug | Vincristine | |||
Disease Info | [ICD-11: 2C25] | Lung cancer | Investigative | |
Regulate Info | Up-regulation | Caspase-9 | Expression | |
Result | Patchouli alcohol induces G0 /G1 cell cycle arrest and apoptosis in vincristine-resistant non-small cell lung cancer through ROS-mediated DNA damage |
Pair Name | Phenethyl isothiocyanate, Irinotecan | |||
Phytochemical | Phenethyl isothiocyanate | |||
Drug | Irinotecan | |||
Disease Info | [ICD-11: 2B90] | Colon cancer | Investigative | |
Regulate Info | Up-regulation | Caspase-9 | Expression | |
Result | PEITC potentiates IRI anticancer activity by promoting cell apoptosis in the human colon HCT 116 cells. Thus, PEITC may be a potential enhancer for IRI in humans as an anticolon cancer drug in the future. |
Pair Name | Pterostilbene, Sorafenib | |||
Phytochemical | Pterostilbene | |||
Drug | Sorafenib | |||
Disease Info | [ICD-11: 2B72] | Gastric cancer | Investigative | |
Regulate Info | Up-regulation | Caspase-9 | Cleavage | |
Result | PET obviously enhanced sorafenib's antitumour effects against GAC through inhibiting cell proliferation, inducing autophagy and promoting apoptosis. The combination therapy with PET and sorafenib may serve as a novel therapeutic strategy for treating GAC and deserve further clinical trials. |
Pair Name | Pterostilbene, TNF-related apoptosis inducing ligand | |||
Phytochemical | Pterostilbene | |||
Drug | TNF-related apoptosis inducing ligand | |||
Disease Info | [ICD-11: 2A00-2F9Z] | Solid tumour or cancer | Investigative | |
Regulate Info | Up-regulation | Caspase-9 | Activity | |
Result | Pterostilbene enhances TRAIL-induced apoptosis through the induction of death receptors and downregulation of cell survival proteins in TRAIL-resistance triple negative breast cancer cells |
Pair Name | Quercetin, Cisplatin | |||
Phytochemical | Quercetin | |||
Drug | Cisplatin | |||
Disease Info | [ICD-11: 2C73] | Ovarian cancer | Investigative | |
Regulate Info | Up-regulation | Caspase-9 | Cleavage | |
Result | This study provides further new data for the mechanism by which the QU pre-treatment re-sensitizes SKOV-3/CDDP cells to cisplatin. |
Pair Name | Quercetin, Doxorubicin | |||
Phytochemical | Quercetin | |||
Drug | Doxorubicin | |||
Disease Info | [ICD-11: 2A60.Z] | Acute myeloid leukemia | Investigative | |
Regulate Info | Up-regulation | Caspase-9 | Expression | |
Result | These findings demonstrated that quercetin is important in MDR and may be developed into a new reversal agent for cancer chemotherapy. |
Pair Name | Resveratrol, Cisplatin | |||
Phytochemical | Resveratrol | |||
Drug | Cisplatin | |||
Disease Info | [ICD-11: 2C60] | Breast cancer | Investigative | |
Regulate Info | Up-regulation | Caspase-9 | Activity | |
Result | RSV, an effective anti-oxidant, and CDDP as an effective drug in cancer treatment, were found to increase apoptosis when given in the MDA-MB-231 cell. |
Pair Name | Resveratrol, Cisplatin | |||
Phytochemical | Resveratrol | |||
Drug | Cisplatin | |||
Disease Info | [ICD-11: 2C73] | Ovarian cancer | Investigative | |
Regulate Info | Up-regulation | Caspase-9 | Cleavage | |
Result | Resveratrol Enhances Cytotoxic Effects of Cisplatin by Inducing Cell Cycle Arrest and Apoptosis in Ovarian Adenocarcinoma SKOV-3 Cells through Activating the p38 MAPK and Suppressing AKT |
Pair Name | Resveratrol, Rapamycin | |||
Phytochemical | Resveratrol | |||
Drug | Rapamycin | |||
Disease Info | [ICD-11: 2D10.1] | Papillary thyroid cancer | Investigative | |
Regulate Info | Up-regulation | Caspase-9 | Expression | |
Result | The present study suggests that the combination of rapamycin and resveratrol may be a promising strategy for the treatment of papillary thyroid cancer. |
Pair Name | Resveratrol, Temozolomide | |||
Phytochemical | Resveratrol | |||
Drug | Temozolomide | |||
Disease Info | [ICD-11: 2F7Z] | Glioma | Investigative | |
Regulate Info | Up-regulation | Caspase-9 | Expression | |
Result | TMZ in combination with resveratrol remarkably increased reactive oxygen species (ROS) production, which serves as an upstream signal for AMP-activated protein kinase (AMPK) activation. Subsequently, activated AMPK inhibited mTOR signaling and downregulated antiapoptosis protein Bcl-2, which was contributed to the additive antiproliferation effects of combination treatment. In an orthotopic xenograft model of GBM, TMZ plus resveratrol treatment significantly reduced the volume of tumor, which was confirmed by decreased expression of Ki-67, a marker of proliferation index |
Pair Name | Resveratrol, TNF-related apoptosis inducing ligand | |||
Phytochemical | Resveratrol | |||
Drug | TNF-related apoptosis inducing ligand | |||
Disease Info | [ICD-11: 2C90.0] | Renal cell carcinoma | Investigative | |
Regulate Info | Up-regulation | Caspase-9 | Activity | |
Result | Our data demonstrated that RES plus Ad5/35-TRAIL significantly inhibited RCC xenograft growth in nude mice. These results suggest the possibility of a new combination therapeutic leading to the improvement of RCC treatment. |
Pair Name | Rosmarinic acid, Anti-MUC1 antibody | |||
Phytochemical | Rosmarinic acid | |||
Drug | Anti-MUC1 antibody | |||
Disease Info | [ICD-11: 2B72] | Gastric cancer | Investigative | |
Regulate Info | Up-regulation | Caspase-9 | Expression | |
Result | Results of the study indicate that combined action of anti-MUC1 and RA is more effective than monotherapy in relation to examined cancer related factors. Such treatment can be considered as new, promising strategy in gastric cancer therapy. |
Pair Name | Sanguinarium, Bortezomib | |||
Phytochemical | Sanguinarium | |||
Drug | Bortezomib | |||
Disease Info | [ICD-11: 2A83] | Multiple myeloma | Investigative | |
Regulate Info | Down-regulation | Caspase-9 | Activity | |
Result | Our findings demonstrate that SNG induces mitochondrial and caspase-dependent apoptosis, generates oxidative stress, and suppresses MM cell lines proliferation. In addition, co-treatment of MM cell lines with sub-toxic doses of SNG and BTZ potentiated the cytotoxic activity. These results would suggest that SNG could be developed into therapeutic agent either alone or in combination with other anticancer drugs in MM. |
Pair Name | Scutellarin, Oxaliplatin | |||
Phytochemical | Scutellarin | |||
Drug | Oxaliplatin | |||
Disease Info | [ICD-11: 2B91] | Colorectal cancer | Investigative | |
Regulate Info | Up-regulation | Caspase-9 | Cleavage | |
Result | It was indicated that scutellarin resensitizes oxaliplatin-resistant CRC cells to oxaliplatin treatment through inhibition of PKM2. |
Pair Name | Shikonin, 4-hydroxytamoxifen | |||
Phytochemical | Shikonin | |||
Drug | 4-hydroxytamoxifen | |||
Disease Info | [ICD-11: 2C60] | Breast cancer | Investigative | |
Regulate Info | Up-regulation | Caspase-9 | Cleavage | |
Result | The combination of SK and 4-OHT shows highly efficient anticancer effects on breast cancer therapy. SK may be a promising candidate as an adjuvant to 4-OHT for breast cancer treatments, especially for ER- breast cancer. |
Pair Name | Shikonin, Cisplatin | |||
Phytochemical | Shikonin | |||
Drug | Cisplatin | |||
Disease Info | [ICD-11: 2C94] | Bladder cancer | Investigative | |
Regulate Info | Up-regulation | Caspase-9 | Activity | |
Result | Shikonin as a synergistic agent to cisplatin could be a highly efficient way to achieve anticancer synergism by inducing intracellular oxidative stress |
Pair Name | Shikonin, Gemcitabine | |||
Phytochemical | Shikonin | |||
Drug | Gemcitabine | |||
Disease Info | [ICD-11: 2C10] | Pancreatic cancer | Investigative | |
Regulate Info | Up-regulation | Caspase-9 | Activity | |
Result | Our results suggest that shikonin can suppress the growth of human pancreatic tumors and potentiate the antitumor effects of gemcitabine through the suppression of NF-κB and NF-κB-regulated gene products. |
Pair Name | Shogaol, Gefitinib | |||
Phytochemical | Shogaol | |||
Drug | Gefitinib | |||
Disease Info | [ICD-11: 2C73] | Ovarian Cancer | Investigative | |
Regulate Info | Up-regulation | Caspase-9 | Cleavage | |
Result | Our results suggest that 6-shogaol exerts a potential anti-cancer effect in ovarian cancer and combination treatment with 6-shogaol and gefitinib may provide a novel anti-tumor therapeutic strategy in gefitinib-resistant ovarian cancer. |
Pair Name | Sulforaphane, PP242 | |||
Phytochemical | Sulforaphane | |||
Drug | PP242 | |||
Disease Info | [ICD-11: 2B70] | Esophageal cancer | Investigative | |
Regulate Info | Up-regulation | Caspase-9 | Cleavage | |
Result | Our findings demonstrate that PP242 enhances the anti-tumor activity of SFN by blocking SFN-induced activation of Akt/mTOR pathway in ESCC, which provides a rationale for treating ESCC using SFN combined with Akt/mTOR pathway inhibitors. |
Pair Name | Sulforaphene, Carboplatin | |||
Phytochemical | Sulforaphene | |||
Drug | Carboplatin | |||
Disease Info | [ICD-11: 2C25] | Lung cancer | Investigative | |
Regulate Info | Up-regulation | Caspase-9 | Expression | |
Result | This study demonstrates that the duel character of this combination therapy may be an effective replacement for conventional therapy alone against NSCLC. |
Pair Name | Sulforaphene, Cisplatin | |||
Phytochemical | Sulforaphene | |||
Drug | Cisplatin | |||
Disease Info | [ICD-11: 2C73] | Ovarian Cancer | Investigative | |
Regulate Info | Up-regulation | Caspase-9 | Expression | |
Result | SFE synergistically inhibited proliferation and induced apoptosis of SKOV3 and SNU8 cells in combination with cisplatin by activating multiple apoptotic pathways. Therefore, we suggest sulforaphene as a chemo-enhancing adjuvant to improve the efficacy of cisplatin in ovarian cancer treatment. |
Pair Name | Sulforaphene, Photodynamic therapy | |||
Phytochemical | Sulforaphene | |||
Drug | Photodynamic therapy | |||
Disease Info | [ICD-11: 2C77] | Cervical cancer | Investigative | |
Regulate Info | Up-regulation | Caspase-9 | Expression | |
Result | This study could be useful in the improvement of therapies for human cervical and other types of cancers. |
Pair Name | Tangeretin, Fluorouracil | |||
Phytochemical | Tangeretin | |||
Drug | Fluorouracil | |||
Disease Info | [ICD-11: 2B91] | Colorectal cancer | Investigative | |
Regulate Info | Up-regulation | Caspase-9 | Expression | |
Result | To our knowledge gained from literature, this study is the first to describe synergistic activity of TAN and 5-FU against colorectal cancer cells. |
Pair Name | Tea polyphenol, Paclitaxel | |||
Phytochemical | Tea polyphenol | |||
Drug | Paclitaxel | |||
Disease Info | [ICD-11: 2C73] | Ovarian cancer | Investigative | |
Regulate Info | Up-regulation | Caspase-9 | Cleavage | |
Result | Our results showed that the combination of green tea and PTX could be more potent than the individual drug to induce cytotoxicity and apoptosis in ovarian cancer cells. |
Pair Name | Tectorigenin, Paclitaxel | |||
Phytochemical | Tectorigenin | |||
Drug | Paclitaxel | |||
Disease Info | [ICD-11: 2C73] | Ovarian cancer | Investigative | |
Regulate Info | Up-regulation | Caspase-9 | Activity | |
Result | These data suggest that tectorigenin could sensitize paclitaxel-resistant human ovarian cancer cells through inactivation of the Akt/IKK/IκB/NFκB signaling pathway, and promise a new intervention to chemosensitize paclitaxel-induced cytotoxicity in ovarian cancer. |
Pair Name | Tenacissoside G, Fluorouracil | |||
Phytochemical | Tenacissoside G | |||
Drug | Fluorouracil | |||
Disease Info | [ICD-11: 2B91] | Colorectal cancer | Investigative | |
Regulate Info | Up-regulation | Caspase-9 | Cleavage | |
Result | TG potentiated 5-FU's inhibitory activity to human colorectal cancer through arresting cell cycle progression and inducing p53-mediated apoptosis, which may present a novel strategy in CRC therapies and contribute to the optimizing clinical application of 5-FU. |
Pair Name | Tetrandrine, Sorafenib | |||
Phytochemical | Tetrandrine | |||
Drug | Sorafenib | |||
Disease Info | [ICD-11: 2C12] | Hepatocellular carcinoma | Investigative | |
Regulate Info | Up-regulation | Caspase-9 | Expression | |
Result | The antitumour activity of sorafenib plus tetrandrine may be attributed to the induction of the intrinsic apoptosis pathway through ROS/Akt signaling. This finding provides a novel approach that may broaden the clinical application of sorafenib. |
Pair Name | Thymoquinone, Fluorouracil | |||
Phytochemical | Thymoquinone | |||
Drug | Fluorouracil | |||
Disease Info | [ICD-11: 2C60] | Breast cancer | Investigative | |
Regulate Info | Up-regulation | Caspase-9 | Expression | |
Result | TQ and 5-FU probably showed synergistic effect on both of cell cycle and apoptosis of tested TNBC cell lines. Our study reveals that TQ can synergise 5-FU action, and increase its anticancer efficiency against TNBC cells, which might be good choice in drug development for TNBC treatment. |
Pair Name | Thymoquinone, Methotrexate | |||
Phytochemical | Thymoquinone | |||
Drug | Methotrexate | |||
Disease Info | [ICD-11: 2B51] | Osteosarcoma | Investigative | |
Regulate Info | Up-regulation | Caspase-9 | Expression | |
Result | The co-treatment of TQ and MTX is associated with the up-regulation of apoptotic factors and down-regulation of anti-apoptotic factors, conducting apoptosis aggravation and OS cell death. |
Pair Name | Thymoquinone, Topotecan | |||
Phytochemical | Thymoquinone | |||
Drug | Topotecan | |||
Disease Info | [ICD-11: 2A60.Z] | Acute myeloid leukemia | Investigative | |
Regulate Info | Up-regulation | Caspase-9 | Expression | |
Result | Thymoquinone, when combined with topotecan in noncytotoxic doses, produced synergistic antiproliferative and proapoptotic effects in AML cells |
Pair Name | Ursolic acid, Doxorubicin | |||
Phytochemical | Ursolic acid | |||
Drug | Doxorubicin | |||
Disease Info | [ICD-11: 2B91] | Colorectal cancer | Investigative | |
Regulate Info | Up-regulation | Caspase-9 | Cleavage | |
Result | UA may be a novel anticancer strategy and could be considered for investigation as a complementary chemotherapy agent in the future. |
Pair Name | Ursolic acid, Oxaliplatin | |||
Phytochemical | Ursolic acid | |||
Drug | Oxaliplatin | |||
Disease Info | [ICD-11: 2B91] | Colorectal cancer | Investigative | |
Regulate Info | Up-regulation | Caspase-9 | Activity | |
Result | These observations suggested that a combination of UA and Oxa elicited synergistically anticancer effects in RKO cells and provided new evidence for potential application of UA and Oxa for CRC treatment. |
Pair Name | Ursolic acid, Sorafenib | |||
Phytochemical | Ursolic acid | |||
Drug | Sorafenib | |||
Disease Info | [ICD-11: 2A00-2F9Z] | Solid tumour or cancer | Investigative | |
Regulate Info | Up-regulation | Caspase-9 | Expression | |
Result | These results suggest that the synergistic antitumor effects of sorafenib combined with ursolic acid may involve the induction of Mcl-1-related apoptosis and SLC7A11-dependent ferroptosis. Our findings may offer a novel effective therapeutic strategy for tumor treatment. |
Pair Name | Vanillin, Fluorouracil | |||
Phytochemical | Vanillin | |||
Drug | Fluorouracil | |||
Disease Info | [ICD-11: 2B91] | Colorectal cancer | Investigative | |
Regulate Info | Up-regulation | Caspase-9 | Cleavage | |
Result | Vanillin is deemed to be a promising anticancer candidate by inhibiting NNMT and may attenuate NNMT‑induced resistance to 5‑Fu in human CRC therapy with few side effects. |
Pair Name | Zerumbone, Cisplatin | |||
Phytochemical | Zerumbone | |||
Drug | Cisplatin | |||
Disease Info | [ICD-11: 2C12] | Hepatocellular carcinoma | Investigative | |
Regulate Info | Up-regulation | Caspase-9 | Expression | |
Result | The current study indicates that the treatment of 4.62 μM of ZER combined with 1.93 μM of CIS in human liver cancer cells exerts synergistic effects on cell growth inhibition, apoptosis induction, angiogenesis, and invasion by modulating gene expression. |
Pair Name | Zerumbone, Paclitaxel | |||
Phytochemical | Zerumbone | |||
Drug | Paclitaxel | |||
Disease Info | [ICD-11: 2C60] | Breast cancer | Investigative | |
Regulate Info | Up-regulation | Caspase-9 | Expression | |
Result | The prooxidant properties of zerumbone potentially resensitize breast cancer cells to PTX by enhancing intracellular ROS-mediated oxidative stress. |
Pair Name | 2,3,5,6-Tetramethylpyrazine, Cisplatin | |||
Phytochemical | 2,3,5,6-Tetramethylpyrazine | |||
Drug | Cisplatin | |||
Disease Info | [ICD-11: 2C10] | Pancreatic cancer | Investigative | |
Regulate Info | Up-regulation | Caspase-9 | Cleavage | |
Result | A series of ligustrazine-derived chalcones-modified platinum(IV) complexes were synthesized and evaluated for their anti-proliferative potency and generated an optimal platinum(IV) complex 16a. The above-described results indicated that 16a obtained different anti-cancer mechanisms of CDDP, which could initiate mitochondria-dependent apoptosis and xCT-GPX4 axial-mediated ferroptosis in PANC-1/CDDP cells. |
Pair Name | Cepharanthine, Cisplatin | |||
Phytochemical | Cepharanthine | |||
Drug | Cisplatin | |||
Disease Info | [ICD-11: 2B70] | Esophageal cancer | Investigative | |
Regulate Info | Up-regulation | Caspase-9 | Cleavage | |
Result | Cepharanthine hydrochloride reverses the mdr1 (P-glycoprotein)-mediated esophageal squamous cell carcinoma cell cisplatin resistance through JNK and p53 signals |
Pair Name | Chrysin, Fluorouracil | |||
Phytochemical | Chrysin | |||
Drug | Fluorouracil | |||
Disease Info | [ICD-11: 2B72] | Gastric cancer | Investigative | |
Regulate Info | Up-regulation | Caspase-9 | Cleavage | |
Result | Potentiating activities of chrysin in the therapeutic efficacy of 5-fluorouracil in gastric cancer cells |
Pair Name | Decursin, Doxorubicin | |||
Phytochemical | Decursin | |||
Drug | Doxorubicin | |||
Disease Info | [ICD-11: 2C73] | Ovarian cancer | Investigative | |
Regulate Info | Up-regulation | Caspase-9 | Activity | |
Result | AGN would be a potentially novel treatment option for multidrug-resistant tumors by sensitizing to anticancer agents. |
Pair Name | Kaempferol, Cisplatin | |||
Phytochemical | Kaempferol | |||
Drug | Cisplatin | |||
Disease Info | [ICD-11: 2B90] | Colon cancer | Investigative | |
Regulate Info | Up-regulation | Caspase-9 | Cleavage | |
Result | Kaempferol overcomes 5-fluorouracil resistance in human resistant LS174 colon cancer cells |
Pair Name | Liquiritin, Cisplatin | |||
Phytochemical | Liquiritin | |||
Drug | Cisplatin | |||
Disease Info | [ICD-11: 2B72] | Gastric cancer | Investigative | |
Regulate Info | Up-regulation | Caspase-9 | Cleavage | |
Result | Liquiritin induces apoptosis and autophagy in cisplatin (DDP)-resistant gastric cancer cells in vitro and xenograft nude mice in vivo |
Pair Name | Platycodin D, Histone deacetylase inhibitor | |||
Phytochemical | Platycodin D | |||
Drug | Histone deacetylase inhibitor | |||
Disease Info | [ICD-11: 2C12] | Hepatocellular carcinoma | Investigative | |
Regulate Info | Up-regulation | Caspase-9 | Cleavage | |
Result | Platycodin D reverses histone deacetylase inhibitor resistance in hepatocellular carcinoma cells by repressing ERK1/2-mediated cofilin-1 phosphorylation |
Pair Name | Tanshinone I, Epirubicin | |||
Phytochemical | Tanshinone I | |||
Drug | Epirubicin | |||
Disease Info | [ICD-11: 2C12] | Hepatocellular carcinoma | Investigative | |
Regulate Info | Up-regulation | Caspase-9 | Cleavage | |
Result | Our results suggested that Tan I could effectively improve the anti-tumor effect of EADM, and synergize EADM to reverse HIF-1α mediated resistance via targeting PI3K/AKT/HIF-1α signaling pathway. |
No. | Title | Href |
---|---|---|
1 | The combination of Biochanin A and SB590885 potentiates the inhibition of tumour progression in hepatocellular carcinoma. Cancer Cell Int. 2020 Aug 5;20:371. doi: 10.1186/s12935-020-01463-w. | Click |
2 | The Effect of Calycosin-7-O-β-D-Glucoside and its Synergistic Augmentation of Cisplatin-induced Apoptosis in SK-OV-3 Cells. Curr Pharm Des. 2022;28(26):2161-2166. doi: 10.2174/1381612828666220610164100. | Click |
3 | Protective effect of Chlorogenic acid against methotrexate induced oxidative stress, inflammation and apoptosis in rat liver: An experimental approach. Chem Biol Interact. 2017 Jun 25;272:80-91. doi: 10.1016/j.cbi.2017.05.002. | Click |
4 | Eugenol: A New Option in Combination Therapy with Sorafenib for the Treatment of Undifferentiated Thyroid Cancer. Iran J Allergy Asthma Immunol. 2022 Jun 18;21(3):313-321. doi: 10.18502/ijaai.v21i3.9804. | Click |
5 | Magnoflorine improves sensitivity to doxorubicin (DOX) of breast cancer cells via inducing apoptosis and autophagy through AKT/mTOR and p38 signaling pathways. Biomed Pharmacother. 2020 Jan;121:109139. doi: 10.1016/j.biopha.2019.109139. | Click |
6 | Improved chemosensitivity in cervical cancer to cisplatin: synergistic activity of mahanine through STAT3 inhibition. Cancer Lett. 2014 Aug 28;351(1):81-90. doi: 10.1016/j.canlet.2014.05.005. | Click |
7 | Molecular mechanism of ion channel protein TMEM16A regulated by natural product of narirutin for lung cancer adjuvant treatment. Int J Biol Macromol. 2022 Dec 31;223(Pt A):1145-1157. doi: 10.1016/j.ijbiomac.2022.11.123. | Click |
8 | Oleanolic acid increases the anticancer potency of doxorubicin in pancreatic cancer cells. J Biochem Mol Toxicol. 2023 Oct;37(10):e23426. doi: 10.1002/jbt.23426. | Click |
9 | P38 Signal Transduction Pathway Has More Cofactors on Apoptosis of SGC-7901 Gastric Cancer Cells Induced by Combination of Rutin and Oxaliplatin. Biomed Res Int. 2019 Nov 6;2019:6407210. doi: 10.1155/2019/6407210. | Click |
10 | Synergistic anticancer effect of flavonoids from Sophora alopecuroides with Sorafenib against hepatocellular carcinoma. Phytother Res. 2023 Feb;37(2):592-610. doi: 10.1002/ptr.7637. | Click |
11 | The synergistic effect between vanillin and doxorubicin in ehrlich ascites carcinoma solid tumor and MCF-7 human breast cancer cell line. Pathol Res Pract. 2016 Sep;212(9):767-77. doi: 10.1016/j.prp.2016.06.004. | Click |
12 | Combination treatment of ligustrazine piperazine derivate DLJ14 and adriamycin inhibits progression of resistant breast cancer through inhibition of the EGFR/PI3K/Akt survival pathway and induction of apoptosis. Drug Discov Ther. 2014 Feb;8(1):33-41. doi: 10.5582/ddt.8.33. | Click |
13 | Aloin and CPT-11 combination activates miRNA-133b and downregulates IGF1R- PI3K/AKT/mTOR and MEK/ERK pathways to inhibit colorectal cancer progression. Biomed Pharmacother. 2023 Dec 31;169:115911. doi: 10.1016/j.biopha.2023.115911. | Click |
14 | Combining α-Hederin with cisplatin increases the apoptosis of gastric cancer in vivo and in vitro via mitochondrial related apoptosis pathway. Biomed Pharmacother. 2019 Dec;120:109477. doi: 10.1016/j.biopha.2019.109477. | Click |
15 | Combining α-Hederin with cisplatin increases the apoptosis of gastric cancer in vivo and in vitro via mitochondrial related apoptosis pathway. Biomed Pharmacother. 2019 Dec;120:109477. doi: 10.1016/j.biopha.2019.109477. | Click |
16 | Synergism between α-mangostin and TRAIL induces apoptosis in squamous cell carcinoma of the oral cavity through the mitochondrial pathway. Oncol Rep. 2017 Dec;38(6):3439-3446. doi: 10.3892/or.2017.6030. | Click |
17 | Anticancer Efficacy and Mechanism of Amentoflavone for Sensitizing Oral Squamous Cell Carcinoma to Cisplatin. Anticancer Res. 2020 Dec;40(12):6723-6732. doi: 10.21873/anticanres.14695. | Click |
18 | Amentoflavone Enhances the Therapeutic Efficacy of Sorafenib by Inhibiting Anti-apoptotic Potential and Potentiating Apoptosis in Hepatocellular Carcinoma In Vivo. Anticancer Res. 2018 Apr;38(4):2119-2125. doi: 10.21873/anticanres.12452. | Click |
19 | Amygdalin as a chemoprotective agent in co-treatment with cisplatin. Front Pharmacol. 2022 Sep 20;13:1013692. doi: 10.3389/fphar.2022.1013692. | Click |
20 | Combined therapeutic effects of bortezomib and anacardic acid on multiple myeloma cells via activation of the endoplasmic reticulum stress response. Mol Med Rep. 2016 Sep;14(3):2679-84. doi: 10.3892/mmr.2016.5533. | Click |
21 | Apigenin Sensitizes Huh-7 Human Hepatocellular Carcinoma Cells to TRAIL-induced Apoptosis. Biomol Ther (Seoul). 2012 Jan;20(1):62-7. doi: 10.4062/biomolther.2012.20.1.062. | Click |
22 | Artesunate exhibits synergistic anti-cancer effects with cisplatin on lung cancer A549 cells by inhibiting MAPK pathway. Gene. 2021 Jan 15;766:145134. doi: 10.1016/j.gene.2020.145134. | Click |
23 | Lower dose of metformin combined with artesunate induced autophagy-dependent apoptosis of glioblastoma by activating ROS-AMPK-mTOR axis. Exp Cell Res. 2023 Sep 1;430(1):113691. doi: 10.1016/j.yexcr.2023.113691. | Click |
24 | Bakuchiol sensitizes cancer cells to TRAIL through ROS- and JNK-mediated upregulation of death receptors and downregulation of survival proteins. Biochem Biophys Res Commun. 2016 Apr 29;473(2):586-92. doi: 10.1016/j.bbrc.2016.03.127. | Click |
25 | Synergistic Anticancer Effect of a Combination of Berbamine and Arcyriaflavin A against Glioblastoma Stem-like Cells. Molecules. 2022 Nov 17;27(22):7968. doi: 10.3390/molecules27227968. | Click |
26 | beta-Elemene, a novel plant-derived antineoplastic agent, increases cisplatin chemosensitivity of lung tumor cells by triggering apoptosis. Oncol Rep. 2009 Jul;22(1):161-70. doi: 10.3892/or_00000420. | Click |
27 | β-elemene enhances cisplatin-induced apoptosis in bladder cancer cells through the ROS-AMPK signaling pathway. Oncol Lett. 2020 Jan;19(1):291-300. doi: 10.3892/ol.2019.11103. | Click |
28 | Evaluation of cisplatin in combination with β-elemene as a regimen for prostate cancer chemotherapy. Basic Clin Pharmacol Toxicol. 2010 Nov;107(5):868-76. doi: 10.1111/j.1742-7843.2010.00592.x. | Click |
29 | β-Elemene promotes cisplatin-induced cell death in human bladder cancer and other carcinomas. Anticancer Res. 2013 Apr;33(4):1421-8. | Click |
30 | Enhancement of cisplatin-induced apoptosis by β-elemene in resistant human ovarian cancer cells. Med Oncol. 2013 Mar;30(1):424. doi: 10.1007/s12032-012-0424-4. | Click |
31 | Involvement of Mitochondrial Damage and Oxidative Stress in Apoptosis Induced by Betulin Plus Arsenic Trioxide in Neuroblastoma Cells. Anticancer Res. 2023 Jun;43(6):2467-2476. doi: 10.21873/anticanres.16414. | Click |
32 | Betulinic acid restores imatinib sensitivity in BCR-ABL1 kinase-independent, imatinib-resistant chronic myeloid leukemia by increasing HDAC3 ubiquitination and degradation. Ann N Y Acad Sci. 2020 May;1467(1):77-93. doi: 10.1111/nyas.14298. | Click |
33 | Bisdemethoxycurcumin Promotes Apoptosis and Inhibits the Epithelial-Mesenchymal Transition through the Inhibition of the G-Protein-Coupled Receptor 161/Mammalian Target of Rapamycin Signaling Pathway in Triple Negative Breast Cancer Cells. J Agric Food Chem. 2021 Dec 8;69(48):14557-14567. doi: 10.1021/acs.jafc.1c05585. | Click |
34 | Combination Treatment of Sorafenib and Bufalin Induces Apoptosis in NCI-H292 Human Lung Cancer Cells In Vitro. In Vivo. 2022 Mar-Apr;36(2):582-595. doi: 10.21873/invivo.12741. | Click |
35 | Synergistic Anticancer Activity of Combined Use of Caffeic Acid with Paclitaxel Enhances Apoptosis of Non-Small-Cell Lung Cancer H1299 Cells in Vivo and in Vitro. Cell Physiol Biochem. 2018;48(4):1433-1442. doi: 10.1159/000492253. | Click |
36 | Autophagy-induced intracellular signaling fractional nano-drug system for synergistic anti-tumor therapy. J Colloid Interface Sci. 2023 Sep;645:986-996. doi: 10.1016/j.jcis.2023.05.031. | Click |
37 | Combinational treatment of 5-fluorouracil and casticin induces apoptosis in mouse leukemia WEHI-3 cells in vitro. Environ Toxicol. 2020 Sep;35(9):911-921. doi: 10.1002/tox.22927. | Click |
38 | Combination of chrysin and cisplatin promotes the apoptosis of Hep G2 cells by up-regulating p53. Chem Biol Interact. 2015 May 5;232:12-20. doi: 10.1016/j.cbi.2015.03.003. | Click |
39 | Targeting Lactate Dehydrogenase A with Catechin Resensitizes SNU620/5FU Gastric Cancer Cells to 5-Fluorouracil. Int J Mol Sci. 2021 May 20;22(10):5406. doi: 10.3390/ijms22105406. | Click |
40 | Corylin increases the sensitivity of hepatocellular carcinoma cells to chemotherapy through long noncoding RNA RAD51-AS1-mediated inhibition of DNA repair. Cell Death Dis. 2018 May 1;9(5):543. doi: 10.1038/s41419-018-0575-0. | Click |
41 | Effects and mechanisms of trifluridine alone or in combination with cryptotanshinone in inhibiting malignant biological behavior of gastric cancer. Cell Cycle. 2023 Jun;22(12):1463-1477. doi: 10.1080/15384101.2023.2215678. | Click |
42 | Sorafenib and CuB exert synergistic antitumor effects against hepatocellular carcinoma cells via inhibition of STAT3 phosphorylation. FEBS Open Bio. 2021 Jan;11(1):133-145. doi: 10.1002/2211-5463.13035. | Click |
43 | Combination effect of curcumin with docetaxel on the PI3K/AKT/mTOR pathway to induce autophagy and apoptosis in esophageal squamous cell carcinoma. Am J Transl Res. 2021 Jan 15;13(1):57-72. | Click |
44 | Curcumin and melphalan cotreatment induces cell cycle arrest and apoptosis in MDA-MB-231 breast cancer cells. Sci Rep. 2023 Aug 18;13(1):13446. doi: 10.1038/s41598-023-40535-5. | Click |
45 | Curcumin sensitizes human lung cancer cells to apoptosis and metastasis synergistically combined with carboplatin. Exp Biol Med (Maywood). 2015 Nov;240(11):1416-25. doi: 10.1177/1535370215571881. | Click |
46 | Curcumin enhances Apo2L/TRAIL-induced apoptosis in chemoresistant ovarian cancer cells. Gynecol Oncol. 2007 Apr;105(1):104-12. doi: 10.1016/j.ygyno.2006.10.050. | Click |
47 | The role of daurisoline treatment in hepatocellular carcinoma: Inhibiting vasculogenic mimicry formation and enhancing sensitivity to sorafenib. Phytomedicine. 2021 Nov;92:153740. doi: 10.1016/j.phymed.2021.153740. | Click |
48 | Decursin and Doxorubicin Are in Synergy for the Induction of Apoptosis via STAT3 and/or mTOR Pathways in Human Multiple Myeloma Cells. Evid Based Complement Alternat Med. 2013;2013:506324. doi: 10.1155/2013/506324. | Click |
49 | Dehydrobruceine B enhances the cisplatin-induced cytotoxicity through regulation of the mitochondrial apoptotic pathway in lung cancer A549 cells. Biomed Pharmacother. 2017 May;89:623-631. doi: 10.1016/j.biopha.2017.02.055. | Click |
50 | δ-Tocotrienol sensitizes and re-sensitizes ovarian cancer cells to cisplatin via induction of G1 phase cell cycle arrest and ROS/MAPK-mediated apoptosis. Cell Prolif. 2021 Nov;54(11):e13111. doi: 10.1111/cpr.13111. | Click |
51 | Synergistic anti-cancer activity of the combination of dihydroartemisinin and doxorubicin in breast cancer cells. Pharmacol Rep. 2013;65(2):453-9. doi: 10.1016/s1734-1140(13)71021-1. | Click |
52 | Dihydroartemisinin Induced Apoptosis and Synergized With Chemotherapy in Pleural Effusion Lymphoma Cells. Anticancer Res. 2023 Mar;43(3):1139-1148. doi: 10.21873/anticanres.16259. | Click |
53 | Green tea polyphenol EGCG sensitizes human prostate carcinoma LNCaP cells to TRAIL-mediated apoptosis and synergistically inhibits biomarkers associated with angiogenesis and metastasis. Oncogene. 2008 Mar 27;27(14):2055-63. doi: 10.1038/sj.onc.1210840. | Click |
54 | EGCG sensitizes human nasopharyngeal carcinoma cells to TRAIL-mediated apoptosis by activation NF-κB. Neoplasma. 2017;64(1):74-80. doi: 10.4149/neo_2017_109. | Click |
55 | Eugenol Exerts Apoptotic Effect and Modulates the Sensitivity of HeLa Cells to Cisplatin and Radiation. Molecules. 2019 Nov 3;24(21):3979. doi: 10.3390/molecules24213979. | Click |
56 | Eugenol potentiates cisplatin anti-cancer activity through inhibition of ALDH-positive breast cancer stem cells and the NF-κB signaling pathway. Mol Carcinog. 2018 Mar;57(3):333-346. doi: 10.1002/mc.22758. | Click |
57 | Evodiamine synergizes with doxorubicin in the treatment of chemoresistant human breast cancer without inhibiting P-glycoprotein. PLoS One. 2014 May 15;9(5):e97512. doi: 10.1371/journal.pone.0097512. | Click |
58 | Furanodiene enhances the anti-cancer effects of doxorubicin on ERα-negative breast cancer cells in vitro. Eur J Pharmacol. 2016 Mar 5;774:10-9. doi: 10.1016/j.ejphar.2015.11.039. | Click |
59 | Synergistic effects of 5-fluorouracil and gambogenic acid on A549 cells: activation of cell death caused by apoptotic and necroptotic mechanisms via the ROS-mitochondria pathway. Biol Pharm Bull. 2014;37(8):1259-68. doi: 10.1248/bpb.b13-00972. | Click |
60 | Gambogic acid induces autophagy and combines synergistically with chloroquine to suppress pancreatic cancer by increasing the accumulation of reactive oxygen species. Cancer Cell Int. 2019 Jan 5;19:7. doi: 10.1186/s12935-018-0705-x. | Click |
61 | Viability inhibition effect of gambogic acid combined with cisplatin on osteosarcoma cells via mitochondria-independent apoptotic pathway. Mol Cell Biochem. 2013 Oct;382(1-2):243-52. doi: 10.1007/s11010-013-1740-5. | Click |
62 | Gambogic acid synergistically potentiates cisplatin-induced apoptosis in non-small-cell lung cancer through suppressing NF-κB and MAPK/HO-1 signalling. Br J Cancer. 2014 Jan 21;110(2):341-52. doi: 10.1038/bjc.2013.752. | Click |
63 | Suppression of NF-κB signaling and P-glycoprotein function by gambogic acid synergistically potentiates adriamycin -induced apoptosis in lung cancer. Curr Cancer Drug Targets. 2014;14(1):91-103. doi: 10.2174/1568009613666131113100634. | Click |
64 | Gambogic acid sensitizes gemcitabine efficacy in pancreatic cancer by reducing the expression of ribonucleotide reductase subunit-M2 (RRM2). J Exp Clin Cancer Res. 2017 Aug 10;36(1):107. doi: 10.1186/s13046-017-0579-0. | Click |
65 | γ-tocotrienol enhances the chemosensitivity of human oral cancer cells to docetaxel through the downregulation of the expression of NF-κB-regulated anti-apoptotic gene products. Int J Oncol. 2013;42(1):75-82. doi:10.3892/ijo.2012.1692 through the downregulation of the expression of NF-κB-regulated anti-apoptotic gene products. Int J Oncol. 2013;42(1):75-82. doi:10.3892/ijo.2012.1692 | Click |
66 | {Gamma}-tocotrienol inhibits pancreatic tumors and sensitizes them to gemcitabine treatment by modulating the inflammatory microenvironment. Cancer Res. 2010 Nov 1;70(21):8695-705. doi: 10.1158/0008-5472.CAN-10-2318. Epub 2010 Sep 23. | Click |
67 | Ginsenoside RG1 augments doxorubicin-induced apoptotic cell death in MDA-MB-231 breast cancer cell lines. J Biochem Mol Toxicol. 2022 Jan;36(1):e22945. doi: 10.1002/jbt.22945. | Click |
68 | Ginsenoside Rg5 Sensitizes Paclitaxel-Resistant Human Cervical-Adeno-Carcinoma Cells to Paclitaxel-And Enhances the Anticancer Effect of Paclitaxel. Genes (Basel). 2022 Jun 24;13(7):1142. doi: 10.3390/genes13071142. | Click |
69 | Glabridin plays dual action to intensify anti-metastatic potential of paclitaxel via impeding CYP2C8 in liver and CYP2J2/EETs in tumor of an orthotopic mouse model of breast cancer. Chem Biol Interact. 2023 Sep 1;382:110605. doi: 10.1016/j.cbi.2023.110605. | Click |
70 | Indole-3-Carbinol (I3C) enhances the sensitivity of murine breast adenocarcinoma cells to doxorubicin (DOX) through inhibition of NF-κβ, blocking angiogenesis and regulation of mitochondrial apoptotic pathway. Chem Biol Interact. 2018 Jun 25;290:19-36. doi: 10.1016/j.cbi.2018.05.005. | Click |
71 | Combination of L-gossypol and low-concentration doxorubicin induces apoptosis in human synovial sarcoma cells. Mol Med Rep. 2015 Oct;12(4):5924-32. doi: 10.3892/mmr.2015.4127. | Click |
72 | The ponatinib/gossypol novel combination provides enhanced anticancer activity against murine solid Ehrlich carcinoma via triggering apoptosis and inhibiting proliferation/angiogenesis. Toxicol Appl Pharmacol. 2021 Dec 1;432:115767. doi: 10.1016/j.taap.2021.115767. | Click |
73 | Gypenosides Synergistically Enhances the Anti-Tumor Effect of 5-Fluorouracil on Colorectal Cancer In Vitro and In Vivo: A Role for Oxidative Stress-Mediated DNA Damage and p53 Activation. PLoS One. 2015 Sep 14;10(9):e0137888. doi: 10.1371/journal.pone.0137888. | Click |
74 | Hesperetin Promotes Cisplatin-Induced Apoptosis of Gastric Cancer In Vitro and In Vivo by Upregulating PTEN Expression. Front Pharmacol. 2020 Aug 27;11:1326. doi: 10.3389/fphar.2020.01326. | Click |
75 | Hispidulin Enhances Temozolomide (TMZ)-Induced Cytotoxicity against Malignant Glioma Cells In Vitro by Inhibiting Autophagy. Comput Intell Neurosci. 2022 Jun 28;2022:5266770. doi: 10.1155/2022/5266770. | Click |
76 | Homoharringtonine and SAHA synergistically enhance apoptosis in human acute myeloid leukemia cells through upregulation of TRAIL and death receptors. Mol Med Rep. 2013 Jun;7(6):1838-44. doi: 10.3892/mmr.2013.1440. | Click |
77 | Dual pH-responsive multifunctional nanoparticles for targeted treatment of breast cancer by combining immunotherapy and chemotherapy. Acta Biomater. 2018 Jan 15;66:310-324. doi: 10.1016/j.actbio.2017.11.010. | Click |
78 | Hypericin-mediated photodynamic therapy enhances gemcitabine induced Capan-2 cell apoptosis via inhibiting NADPH level. J Pharm Pharmacol. 2022 Apr 20;74(4):596-604. doi: 10.1093/jpp/rgab073. | Click |
79 | Icariin-mediated inhibition of NF-κB activity enhances the in vitro and in vivo antitumour effect of 5-fluorouracil in colorectal cancer. Cell Biochem Biophys. 2014 Jul;69(3):523-30. doi: 10.1007/s12013-014-9827-5. | Click |
80 | Irigenin sensitizes TRAIL-induced apoptosis via enhancing pro-apoptotic molecules in gastric cancer cells. Biochem Biophys Res Commun. 2018 Feb 12;496(3):998-1005. doi: 10.1016/j.bbrc.2018.01.003. | Click |
81 | Kaempferol potentiates the sensitivity of pancreatic cancer cells to erlotinib via inhibition of the PI3K/AKT signaling pathway and epidermal growth factor receptor. Inflammopharmacology. 2021 Oct;29(5):1587-1601. doi: 10.1007/s10787-021-00848-1. | Click |
82 | Combining TRAIL and liquiritin exerts synergistic effects against human gastric cancer cells and xenograft in nude mice through potentiating apoptosis and ROS generation. Biomed Pharmacother. 2017 Sep;93:948-960. doi: 10.1016/j.biopha.2017.06.095. | Click |
83 | Anti-proliferative and chemosensitizing effects of luteolin on human gastric cancer AGS cell line. Mol Cell Biochem. 2008 Jun;313(1-2):125-32. doi: 10.1007/s11010-008-9749-x. | Click |
84 | Luteolin combined with low-dose paclitaxel synergistically inhibits epithelial-mesenchymal transition and induces cell apoptosis on esophageal carcinoma in vitro and in vivo. Phytother Res. 2021 Nov;35(11):6228-6240. doi: 10.1002/ptr.7267. | Click |
85 | Luteolin enhances TNF-related apoptosis-inducing ligand's anticancer activity in a lung cancer xenograft mouse model. Biochem Biophys Res Commun. 2012 Jan 13;417(2):842-6. doi: 10.1016/j.bbrc.2011.12.055. | Click |
86 | Synergistic activity of magnolin combined with B-RAF inhibitor SB590885 in hepatocellular carcinoma cells via targeting PI3K-AKT/mTOR and ERK MAPK pathway. Am J Transl Res. 2019 Jun 15;11(6):3816-3824. | Click |
87 | Medicarpin, a legume phytoalexin sensitizes myeloid leukemia cells to TRAIL-induced apoptosis through the induction of DR5 and activation of the ROS-JNK-CHOP pathway. Cell Death Dis. 2014 Oct 16;5(10):e1465. doi: 10.1038/cddis.2014.429. | Click |
88 | Morin Hydrate Sensitizes Hepatoma Cells and Xenograft Tumor towards Cisplatin by Downregulating PARP-1-HMGB1 Mediated Autophagy. Int J Mol Sci. 2020 Nov 4;21(21):8253. doi: 10.3390/ijms21218253. | Click |
89 | Morin enhances auranofin anticancer activity by up-regulation of DR4 and DR5 and modulation of Bcl-2 through reactive oxygen species generation in Hep3B human hepatocellular carcinoma cells. Phytother Res. 2019 May;33(5):1384-1393. doi: 10.1002/ptr.6329. | Click |
90 | Glioma progression is suppressed by Naringenin and APO2L combination therapy via the activation of apoptosis in vitro and in vivo. Invest New Drugs. 2020 Dec;38(6):1743-1754. doi: 10.1007/s10637-020-00979-2. | Click |
91 | Diosmin in combination with naringenin enhances apoptosis in colon cancer cells. Oncol Rep. 2022 Jan;47(1):4. doi: 10.3892/or.2021.8215. | Click |
92 | Neobavaisoflavone sensitizes apoptosis via the inhibition of metastasis in TRAIL-resistant human glioma U373MG cells. Life Sci. 2014 Jan 30;95(2):101-7. doi: 10.1016/j.lfs.2013.10.035. | Click |
93 | The novel small molecule BH3 mimetic nobiletin synergizes with vorinostat to induce apoptosis and autophagy in small cell lung cancer. Biochem Pharmacol. 2023 Oct;216:115807. doi: 10.1016/j.bcp.2023.115807. | Click |
94 | Anticancer activity of Noscapine, an opioid alkaloid in combination with Cisplatin in human non-small cell lung cancer. Lung Cancer. 2011 Mar;71(3):271-82. doi: 10.1016/j.lungcan.2010.06.002. | Click |
95 | Anticancer activity of Noscapine, an opioid alkaloid in combination with Cisplatin in human non-small cell lung cancer. Lung Cancer. 2011 Mar;71(3):271-82. doi: 10.1016/j.lungcan.2010.06.002. | Click |
96 | Antitumor activity of Noscapine in combination with Doxorubicin in triple negative breast cancer. PLoS One. 2011 Mar 15;6(3):e17733. doi: 10.1371/journal.pone.0017733. | Click |
97 | Enhanced anticancer activity of gemcitabine in combination with noscapine via antiangiogenic and apoptotic pathway against non-small cell lung cancer. PLoS One. 2011;6(11):e27394. doi: 10.1371/journal.pone.0027394. | Click |
98 | Oleandrin synergizes with cisplatin in human osteosarcoma cells by enhancing cell apoptosis through activation of the p38 MAPK signaling pathway. Cancer Chemother Pharmacol. 2018 Dec;82(6):1009-1020. doi: 10.1007/s00280-018-3692-7. | Click |
99 | OSW-1 induces apoptosis and cyto-protective autophagy, and synergizes with chemotherapy on triple negative breast cancer metastasis. Cell Oncol (Dordr). 2022 Dec;45(6):1255-1275. doi: 10.1007/s13402-022-00716-2. | Click |
100 | Synergistic inhibitory effects of the oxyresveratrol and dacarbazine combination against melanoma cells. Oncol Lett. 2021 Sep;22(3):667. doi: 10.3892/ol.2021.12928. | Click |
101 | Caspase-mediated pro-apoptotic interaction of panaxadiol and irinotecan in human colorectal cancer cells. J Pharm Pharmacol. 2012 May;64(5):727-34. doi: 10.1111/j.2042-7158.2012.01463.x. Epub 2012 Feb 21. | Click |
102 | Combined Parthenolide and Balsalazide Have Enhanced Antitumor Efficacy Through Blockade of NF-κB Activation. Mol Cancer Res. 2017 Feb;15(2):141-151. doi: 10.1158/1541-7786.MCR-16-0101. | Click |
103 | Patchouli alcohol induces G0 /G1 cell cycle arrest and apoptosis in vincristine-resistant non-small cell lung cancer through ROS-mediated DNA damage. Thorac Cancer. 2023 Jul;14(21):2007-2017. doi: 10.1111/1759-7714.14982. | Click |
104 | Phenethyl isothiocyanate and irinotecan synergistically induce cell apoptosis in colon cancer HCT 116 cells in vitro. Environ Toxicol. 2024 Jan;39(1):457-469. doi: 10.1002/tox.23993. | Click |
105 | Pterostilbene enhances sorafenib's anticancer effects on gastric adenocarcinoma. J Cell Mol Med. 2020 Nov;24(21):12525-12536. doi: 10.1111/jcmm.15795. | Click |
106 | Pterostilbene Enhances TRAIL-Induced Apoptosis through the Induction of Death Receptors and Downregulation of Cell Survival Proteins in TRAIL-Resistance Triple Negative Breast Cancer Cells. J Agric Food Chem. 2017 Dec 27;65(51):11179-11191. doi: 10.1021/acs.jafc.7b02358. | Click |
107 | Potentiation of Cisplatin Cytotoxicity in Resistant Ovarian Cancer SKOV3/Cisplatin Cells by Quercetin Pre-Treatment. Int J Mol Sci. 2023;24(13):10960. Published 2023 Jun 30. doi:10.3390/ijms241310960 | Click |
108 | Quercetin enhances adriamycin cytotoxicity through induction of apoptosis and regulation of mitogen-activated protein kinase/extracellular signal-regulated kinase/c-Jun N-terminal kinase signaling in multidrug-resistant leukemia K562 cells. Mol Med Rep. 2015 Jan;11(1):341-8. doi: 10.3892/mmr.2014.2734. | Click |
109 | Resveratrol increases the sensitivity of breast cancer MDA-MB-231 cell line to cisplatin by regulating intrinsic apoptosis. Iran J Basic Med Sci. 2021 Jan;24(1):66-72. doi: 10.22038/ijbms.2020.50485.11501. | Click |
110 | Resveratrol Enhances Cytotoxic Effects of Cisplatin by Inducing Cell Cycle Arrest and Apoptosis in Ovarian Adenocarcinoma SKOV-3 Cells through Activating the p38 MAPK and Suppressing AKT. Pharmaceuticals (Basel). 2023 May 17;16(5):755. doi: 10.3390/ph16050755. | Click |
111 | Resveratrol potentiates the anti-tumor effects of rapamycin in papillary thyroid cancer: PI3K/AKT/mTOR pathway involved. Arch Biochem Biophys. 2020 Aug 15;689:108461. doi: 10.1016/j.abb.2020.108461. | Click |
112 | Resveratrol enhances the antitumor effects of temozolomide in glioblastoma via ROS-dependent AMPK-TSC-mTOR signaling pathway. CNS Neurosci Ther. 2012;18(7):536-546. doi:10.1111/j.1755-5949.2012.00319.x | Click |
113 | Mechanism and therapeutic prospect of resveratrol combined with TRAIL in the treatment of renal cell carcinoma. Cancer Gene Ther. 2020 Aug;27(7-8):619-623. doi: 10.1038/s41417-019-0150-6. | Click |
114 | Anti-cancer effect of combined action of anti-MUC1 and rosmarinic acid in AGS gastric cancer cells. Eur J Pharmacol. 2021 Jul 5;902:174119. doi: 10.1016/j.ejphar.2021.174119. | Click |
115 | Sanguinarine Induces Apoptosis Pathway in Multiple Myeloma Cell Lines via Inhibition of the JaK2/STAT3 Signaling. Front Oncol. 2019 Apr 17;9:285. doi: 10.3389/fonc.2019.00285. | Click |
116 | Scutellarin resensitizes oxaliplatin-resistant colorectal cancer cells to oxaliplatin treatment through inhibition of PKM2. Mol Ther Oncolytics. 2021 Mar 17;21:87-97. doi: 10.1016/j.omto.2021.03.010. | Click |
117 | Shikonin and 4-hydroxytamoxifen synergistically inhibit the proliferation of breast cancer cells through activating apoptosis signaling pathway in vitro and in vivo. Chin Med. 2020 Mar 10;15:23. doi: 10.1186/s13020-020-00305-1. | Click |
118 | Enhancement of cisplatin-induced colon cancer cells apoptosis by shikonin, a natural inducer of ROS in vitro and in vivo. Biochem Biophys Res Commun. 2016 Jan 22;469(4):1075-82. doi: 10.1016/j.bbrc.2015.12.100. | Click |
119 | Shikonin suppresses tumor growth and synergizes with gemcitabine in a pancreatic cancer xenograft model: Involvement of NF-κB signaling pathway. Biochem Pharmacol. 2014 Apr 1;88(3):322-33. doi: 10.1016/j.bcp.2014.01.041. | Click |
120 | 6-Shogaol Overcomes Gefitinib Resistance via ER Stress in Ovarian Cancer Cells. Int J Mol Sci. 2023 Jan 30;24(3):2639. doi: 10.3390/ijms24032639. | Click |
121 | mTOR inhibitor PP242 increases antitumor activity of sulforaphane by blocking Akt/mTOR pathway in esophageal squamous cell carcinoma. Mol Biol Rep. 2022 Jan;49(1):451-461. doi: 10.1007/s11033-021-06895-9. | Click |
122 | Sulforaphene-Carboplatin Combination Synergistically Enhances Apoptosis by Disruption of Mitochondrial Membrane Potential and Cell Cycle Arrest in Human Non-Small Cell Lung Carcinoma. J Med Food. 2016 Sep;19(9):860-9. doi: 10.1089/jmf.2016.3675. | Click |
123 | Sulforaphene Synergistically Sensitizes Cisplatin via Enhanced Mitochondrial Dysfunction and PI3K/PTEN Modulation in Ovarian Cancer Cells. Anticancer Res. 2015 Jul;35(7):3901-8. | Click |
124 | Evaluation of synergistic effects of sulforaphene with photodynamic therapy in human cervical cancer cell line. Lasers Med Sci. 2016 Nov;31(8):1675-1682. doi: 10.1007/s10103-016-2037-1. | Click |
125 | Synergistic therapy with tangeretin and 5-fluorouracil accelerates the ROS/JNK mediated apoptotic pathway in human colorectal cancer cell. Food Chem Toxicol. 2020 Sep;143:111529. doi: 10.1016/j.fct.2020.111529. | Click |
126 | Synergistic effects of green tea extract and paclitaxel in the induction of mitochondrial apoptosis in ovarian cancer cell lines. Gene. 2021 Jun 30;787:145638. doi: 10.1016/j.gene.2021.145638. | Click |
127 | Tectorigenin sensitizes paclitaxel-resistant human ovarian cancer cells through downregulation of the Akt and NFκB pathway. Carcinogenesis. 2012 Dec;33(12):2488-98. doi: 10.1093/carcin/bgs302. | Click |
128 | Tenacissoside G synergistically potentiates inhibitory effects of 5-fluorouracil to human colorectal cancer. Phytomedicine. 2021 Jun;86:153553. doi: 10.1016/j.phymed.2021.153553. | Click |
129 | Synergistic antitumour activity of sorafenib in combination with tetrandrine is mediated by reactive oxygen species (ROS)/Akt signaling. Br J Cancer. 2013 Jul 23;109(2):342-50. doi: 10.1038/bjc.2013.334. | Click |
130 | Synergistic Role of Thymoquinone on Anticancer Activity of 5-Fluorouracil in Triple Negative Breast Cancer Cells. Anticancer Agents Med Chem. 2022;22(6):1111-1118. doi: 10.2174/1871520621666210624111613. | Click |
131 | Thymoquinone Augments Methotrexate-Induced Apoptosis on Osteosarcoma Cells. Drug Res (Stuttg). 2022 Apr;72(4):220-225. doi: 10.1055/a-1775-7908. | Click |
132 | Antiproliferative and proapoptotic effects of topotecan in combination with thymoquinone on acute myelogenous leukemia. Clin Lymphoma Myeloma Leuk. 2014 Sep;14 Suppl:S46-55. doi: 10.1016/j.clml.2014.04.014. Erratum in: Clin Lymphoma Myeloma Leuk. 2015 Jun;15(6):384. | Click |
133 | Inhibition of colorectal cancer tumorigenesis by ursolic acid and doxorubicin is mediated by targeting the Akt signaling pathway and activating the Hippo signaling pathway. Mol Med Rep. 2023 Jan;27(1):11. doi: 10.3892/mmr.2022.12898. | Click |
134 | Ursolic acid potentiated oxaliplatin to induce apoptosis in colorectal cancer RKO cells. Pharmazie. 2020 Jun 1;75(6):246-249. doi: 10.1691/ph.2020.0417. | Click |
135 | Ursolic acid enhances the antitumor effects of sorafenib associated with Mcl-1-related apoptosis and SLC7A11-dependent ferroptosis in human cancer. Pharmacol Res. 2022 Aug;182:106306. doi: 10.1016/j.phrs.2022.106306. | Click |
136 | Vanillin downregulates NNMT and attenuates NNMT‑related resistance to 5‑fluorouracil via ROS‑induced cell apoptosis in colorectal cancer cells. Oncol Rep. 2021 Jun;45(6):110. doi: 10.3892/or.2021.8061. | Click |
137 | Zerumbone Sensitizes the Anti-Cancer Efficacy of Cisplatin in Hepatocellular Carcinoma Cells. Anticancer Agents Med Chem. 2022 Aug 4;22(16):2885-2895. doi: 10.2174/1871520622666220324090801. | Click |
138 | Zerumbone-induced reactive oxygen species-mediated oxidative stress re-sensitizes breast cancer cells to paclitaxel. Biotechnol Appl Biochem. 2023 Feb;70(1):28-37. doi: 10.1002/bab.2326. | Click |
139 | Ligustrazine-Derived Chalcones-Modified Platinum(IV) Complexes Intervene in Cisplatin Resistance in Pancreatic Cancer through Ferroptosis and Apoptosis. J Med Chem. 2023 Oct 12;66(19):13587-13606. doi: 10.1021/acs.jmedchem.3c00922. | Click |
140 | Cepharanthine hydrochloride reverses the mdr1 (P-glycoprotein)-mediated esophageal squamous cell carcinoma cell cisplatin resistance through JNK and p53 signals. Oncotarget. 2017 Nov 27;8(67):111144-111160. doi: 10.18632/oncotarget.22676. | Click |
141 | Potentiating activities of chrysin in the therapeutic efficacy of 5-fluorouracil in gastric cancer cells. Oncol Lett. 2021 Jan;21(1):24. doi: 10.3892/ol.2020.12285. | Click |
142 | Decursin in Angelica gigas Nakai (AGN) Enhances Doxorubicin Chemosensitivity in NCI/ADR-RES Ovarian Cancer Cells via Inhibition of P-glycoprotein Expression. Phytother Res. 2016 Dec;30(12):2020-2026. doi: 10.1002/ptr.5708. | Click |
143 | The Phenolic compound Kaempferol overcomes 5-fluorouracil resistance in human resistant LS174 colon cancer cells. Sci Rep. 2019 Jan 17;9(1):195. doi: 10.1038/s41598-018-36808-z. | Click |
144 | Liquiritin induces apoptosis and autophagy in cisplatin (DDP)-resistant gastric cancer cells in vitro and xenograft nude mice in vivo. Int J Oncol. 2017 Nov;51(5):1383-1394. doi: 10.3892/ijo.2017.4134. | Click |
145 | Platycodin D reverses histone deacetylase inhibitor resistance in hepatocellular carcinoma cells by repressing ERK1/2-mediated cofilin-1 phosphorylation. Phytomedicine. 2021 Feb;82:153442. doi: 10.1016/j.phymed.2020.153442. | Click |
146 | Combined Treatment of Tanshinone I and Epirubicin Revealed Enhanced Inhibition of Hepatocellular Carcinoma by Targeting PI3K/AKT/HIF-1α. Drug Des Devel Ther. 2022 Sep 19;16:3197-3213. doi: 10.2147/DDDT.S360691. | Click |