Name | Bcl2-associated agonist of cell death | ||
UniProt ID | BAD_HUMAN | ||
Gene Name | BAD | ||
Gene ID | 572 | ||
Synonyms |
BAD, BBC2, BCL2L8
|
||
Sequence |
MFQIPEFEPSEQEDSSSAERGLGPSPAGDGPSGSGKHHRQAPGLLWDASHQQEQPTSSSH
HGGAGAVEIRSRHSSYPAGTEDDEGMGEEPSPFRGRSRSAPPNLWAAQRYGRELRRMSDE FVDSFKKGLPRPKSAGTATQMRQSSSWTRVFQSWWDRNLGRGSSAPSQ |
||
Pathway Map | MAP LINK | ||
T.C. Number | 1.A.16.2.7; 1.A.48.1.4; 1.A.5.2.2; 1.A.8.11.3 | ||
KEGG ID | hsa572 | ||
Pfam | PF08945; PF10514 |
Pair Name | Juglone, Indomethacin | |||
Phytochemical Name | Juglone | |||
Anticancer drug Name | Indomethacin | |||
Disease Info | [ICD-11: 2B90] | Colon cancer | Investigative | |
Regulate Info | Up-regulation | Bcl2-associated agonist of cell death | Expression | |
Result | IND and JUG reduce the inflammatory activity and induce apoptotic cell death, while JUG effectively prevents IND induced gastric ulceration. These findings establish that a combination of IND + JUG may serve as a promising treatment regimen for colon cancer. |
Pair Name | Apigenin, TNF-related apoptosis inducing ligand | |||
Phytochemical | Apigenin | |||
Drug | TNF-related apoptosis inducing ligand | |||
Disease Info | [ICD-11: 2C25] | Lung cancer | Investigative | |
Regulate Info | Up-regulation | Bcl2-associated agonist of cell death | Expression | |
Result | Apigenin enhances TRAIL-induced antitumor activity in NSCLC cells by APG via inhibition of the NF-kappaB, AKT and ERK prosurvival regulators |
Pair Name | Baicalin, Doxorubicin | |||
Phytochemical | Baicalin | |||
Drug | Doxorubicin | |||
Disease Info | [ICD-11: 2C60] | Breast cancer | Investigative | |
Regulate Info | Up-regulation | Bcl2-associated agonist of cell death | Expression | |
Result | This study demonstrate that the effect of baicalin on Dox treatment could enhance cytotoxicity toward breast cancer cells via the ROS/[Ca2+]i-mediated intrinsic apoptosis pathway-thus potentially lessening the required dosage of doxorubicin, and further exploring associated mechanisms in combined treatments for breast cancer clinical interventions in the future. |
Pair Name | Beta-Elemene, Cisplatin | |||
Phytochemical | Beta-Elemene | |||
Drug | Cisplatin | |||
Disease Info | [ICD-11: 2C25] | Lung cancer | Investigative | |
Regulate Info | Up-regulation | Bcl2-associated agonist of cell death | Expression | |
Result | These results define a pathway of procaspase‑3-β-ELE function that involves decreased mitochondrial membrane potential, leading to apoptosis triggered by the release of cytochrome c into the cytoplasm and the modulation of apoptosis-related genes. The reversal of drug resistance of the A549/DDP cell line by β-ELE may be derived from its effect in inducing apoptosis. |
Pair Name | Betulin, Arsenic oxide (As2O3) | |||
Phytochemical | Betulin | |||
Drug | Arsenic oxide (As2O3) | |||
Disease Info | [ICD-11: 2D11] | Neuroblastoma | Investigative | |
Regulate Info | Up-regulation | Bcl2-associated agonist of cell death | Expression | |
Result | The novel combination of As2O3 plus betulin has the potential to serve as a practical anti-neuroblastoma drug. |
Pair Name | Bufalin, Fluorouracil | |||
Phytochemical | Bufalin | |||
Drug | Fluorouracil | |||
Disease Info | [ICD-11: 2B91] | Colorectal cancer | Investigative | |
Regulate Info | Up-regulation | Bcl2-associated agonist of cell death | Expression | |
Result | Bufalin in combination with 5-FU may induce a higher level of apoptosis compared with monotherapy, and the combination mat be a potential therapeutic strategy for the treatment of colorectal cancer. |
Pair Name | Bufalin, Sorafenib | |||
Phytochemical | Bufalin | |||
Drug | Sorafenib | |||
Disease Info | [ICD-11: 2C25] | Lung cancer | Investigative | |
Regulate Info | Up-regulation | Bcl2-associated agonist of cell death | Expression | |
Result | Sorafenib in combination with bufalin shows more potent cytotoxic effects and cell apoptosis than sorafenib or bufalin treatment alone in NCI-H292 cells. The combined treatment significantly enhanced apoptotic cell death in NCI-H292 lung cancer cells by activating ROS-, mitochondria-, and caspase-signaling pathways in vitro. |
Pair Name | Carnosic acid, Tamoxifen | |||
Phytochemical | Carnosic acid | |||
Drug | Tamoxifen | |||
Disease Info | [ICD-11: 2C60] | Breast cancer | Investigative | |
Regulate Info | Up-regulation | Bcl2-associated agonist of cell death | Expression | |
Result | Our study supplies a novel therapeutic strategy to induce apoptosis for suppressing breast cancer, which was relied on Caspase-3/TRAIL activation. |
Pair Name | Cucurbitacin B, Cisplatin | |||
Phytochemical | Cucurbitacin B | |||
Drug | Cisplatin | |||
Disease Info | [ICD-11: 2C94] | Bladder cancer | Investigative | |
Regulate Info | Down-regulation | Bcl2-associated agonist of cell death | Phosphorylation | |
Result | Our results showed that CuB may be a new agent that can support conventional treatment in bladder cancer. Our study is important in terms of enlightening new pathways and developing new treatment methods in the treatment of bladder cancer. |
Pair Name | Epigallocatechin gallate, Fluorouracil | |||
Phytochemical | Epigallocatechin gallate | |||
Drug | Fluorouracil | |||
Disease Info | [ICD-11: 2B91] | Colorectal cancer | Investigative | |
Regulate Info | Up-regulation | Bcl2-associated agonist of cell death | Expression | |
Result | Our data show that EGCG may be act as a novel chemo-sensitizer, and the GRP78/NF-κB/miR-155-5p/MDR1 pathway plays a vital role in EGCG enhancing the sensitivity of colorectal cancer to 5-FU. |
Pair Name | Epigallocatechin gallate, TNF-related apoptosis inducing ligand | |||
Phytochemical | Epigallocatechin gallate | |||
Drug | TNF-related apoptosis inducing ligand | |||
Disease Info | [ICD-11: 2C82] | Prostate cancer | Investigative | |
Regulate Info | Down-regulation | Bcl2-associated agonist of cell death | Expression | |
Result | EGCG sensitizes human prostate carcinoma LNCaP cells to TRAIL-mediated apoptosis and synergistically inhibits biomarkers associated with angiogenesis and metastasis |
Pair Name | Furanodiene, Doxorubicin | |||
Phytochemical | Furanodiene | |||
Drug | Doxorubicin | |||
Disease Info | [ICD-11: 2C60] | Breast cancer | Investigative | |
Regulate Info | Up-regulation | Bcl2-associated agonist of cell death | Expression | |
Result | These results indicate that furanodiene may be a promising and safety natural agent for cancer adjuvant therapy in the future. |
Pair Name | Gamma-Tocotrienol, Cisplatin | |||
Phytochemical | Gamma-Tocotrienol | |||
Drug | Cisplatin | |||
Disease Info | [ICD-11: 2C51] | Mesothelioma | Investigative | |
Regulate Info | Down-regulation | Bcl2-associated agonist of cell death | Phosphorylation | |
Result | These results suggest that the combination therapy of cisplatin with TRF is a plausible strategy for achieving tolerance for the chemotherapeutic agent in MM therapy. |
Pair Name | Gossypol, Zoledronic acid | |||
Phytochemical | Gossypol | |||
Drug | Zoledronic acid | |||
Disease Info | [ICD-11: 2C82] | Prostate cancer | Investigative | |
Regulate Info | Up-regulation | Bcl2-associated agonist of cell death | Expression | |
Result | GP significantly enhances the anti-tumor activity of ZA in hormone- and drug-resistant prostate cancer cells by targeting many pivotal apoptosis-related proteins. |
Pair Name | Juglone, Indomethacin | |||
Phytochemical | Juglone | |||
Drug | Indomethacin | |||
Disease Info | [ICD-11: 2B90] | Colon cancer | Investigative | |
Regulate Info | Up-regulation | Bcl2-associated agonist of cell death | Expression | |
Result | A combination of both was shown to be more effective, suggesting that juglone may be considered for therapeutic intervention of colon cancer. |
Pair Name | Luteolin, Celecoxib | |||
Phytochemical | Luteolin | |||
Drug | Celecoxib | |||
Disease Info | [ICD-11: 2C60] | Breast cancer | Investigative | |
Regulate Info | Up-regulation | Bcl2-associated agonist of cell death | Expression | |
Result | These results demonstrate the synergistic anti-tumor effect of the celecoxib and luteolin combination treatment in different four breast cancer cell lines, thus introducing the possibility of this combination as a new treatment modality. |
Pair Name | Luteolin, Erlotinib | |||
Phytochemical | Luteolin | |||
Drug | Erlotinib | |||
Disease Info | [ICD-11: 2A00] | Glioblastoma multiforme | Investigative | |
Regulate Info | Up-regulation | Bcl2-associated agonist of cell death | Expression | |
Result | These findings suggest that combining luteolin with erlotinib offers a potential treatment strategy for glioblastoma multiforme IV. |
Pair Name | Morin, MST312 | |||
Phytochemical | Morin | |||
Drug | MST312 | |||
Disease Info | [ICD-11: 2B91] | Colorectal cancer | Investigative | |
Regulate Info | Up-regulation | Bcl2-associated agonist of cell death | Phosphorylation | |
Result | Our study suggests that novel targeted-therapy can be implemented by using flavonoid morin and telomerase inhibitor MST‑312 for improved cancer prognosis. |
Pair Name | Naringenin, AMG-951 | |||
Phytochemical | Naringenin | |||
Drug | AMG-951 | |||
Disease Info | [ICD-11: 2F7Z] | Glioma | Investigative | |
Regulate Info | Up-regulation | Bcl2-associated agonist of cell death | Expression | |
Result | The present study provides a novel therapeutic strategy for glioma by potentiating APO2L-induced apoptosis via the combination with NG in glioma tumor cells. |
Pair Name | Oridonin, Venetoclax | |||
Phytochemical | Oridonin | |||
Drug | Venetoclax | |||
Disease Info | [ICD-11: 2A60.Z] | Acute myeloid leukemia | Investigative | |
Regulate Info | Down-regulation | Bcl2-associated agonist of cell death | Expression | |
Result | Oridonin and venetoclax synergistically promote AML cell apoptosis by inhibiting AKT signaling. |
Pair Name | OSW-1, Carboplatin | |||
Phytochemical | OSW-1 | |||
Drug | Carboplatin | |||
Disease Info | [ICD-11: 2C60] | Breast cancer | Investigative | |
Regulate Info | Up-regulation | Bcl2-associated agonist of cell death | Expression | |
Result | Our data revealed the mode of action and molecular mechanism underlying the effect of OSW-1 against TNBC, and provided a useful guidance for improving the sensitivity of TNBC cells to conventional chemotherapeutic drugs, which warrants further investigation. |
Pair Name | Phenethyl isothiocyanate, Irinotecan | |||
Phytochemical | Phenethyl isothiocyanate | |||
Drug | Irinotecan | |||
Disease Info | [ICD-11: 2B90] | Colon cancer | Investigative | |
Regulate Info | Up-regulation | Bcl2-associated agonist of cell death | Expression | |
Result | PEITC potentiates IRI anticancer activity by promoting cell apoptosis in the human colon HCT 116 cells. Thus, PEITC may be a potential enhancer for IRI in humans as an anticolon cancer drug in the future. |
Pair Name | Shikonin, Gefitinib | |||
Phytochemical | Shikonin | |||
Drug | Gefitinib | |||
Disease Info | [ICD-11: 2C25] | Lung cancer | Investigative | |
Regulate Info | Up-regulation | Bcl2-associated agonist of cell death | Expression | |
Result | Shikonin-induced cell apoptosis is closely associated with ROS elevation in the cells. These findings indicate that Shikonin can be an effective small molecule treating gefitinib-resistant NSCLC. |
No. | Title | Href |
---|---|---|
1 | Effects of combined treatment with Indomethacin and Juglone on AOM/DSS induced colon carcinogenesis in Balb/c mice: Roles of inflammation and apoptosis. Life Sci. 2021 Jan 1;264:118657. doi: 10.1016/j.lfs.2020.118657. | Click |
2 | Apigenin potentiates TRAIL therapy of non-small cell lung cancer via upregulating DR4/DR5 expression in a p53-dependent manner. Sci Rep. 2016 Oct 18;6:35468. doi: 10.1038/srep35468. | Click |
3 | Baicalin Enhances Chemosensitivity to Doxorubicin in Breast Cancer Cells via Upregulation of Oxidative Stress-Mediated Mitochondria-Dependent Apoptosis. Antioxidants (Basel). 2021;10(10):1506. Published 2021 Sep 23. doi:10.3390/antiox10101506 | Click |
4 | β-elemene reverses the drug resistance of lung cancer A549/DDP cells via the mitochondrial apoptosis pathway. Oncol Rep. 2014 May;31(5):2131-8. doi: 10.3892/or.2014.3083. | Click |
5 | Involvement of Mitochondrial Damage and Oxidative Stress in Apoptosis Induced by Betulin Plus Arsenic Trioxide in Neuroblastoma Cells. Anticancer Res. 2023 Jun;43(6):2467-2476. doi: 10.21873/anticanres.16414. | Click |
6 | Bufalin and 5-fluorouracil synergistically induce apoptosis in colorectal cancer cells. Oncol Lett. 2018 May;15(5):8019-8026. doi: 10.3892/ol.2018.8332. | Click |
7 | Combination Treatment of Sorafenib and Bufalin Induces Apoptosis in NCI-H292 Human Lung Cancer Cells In Vitro. In Vivo. 2022 Mar-Apr;36(2):582-595. doi: 10.21873/invivo.12741. | Click |
8 | Carnosic acid cooperates with tamoxifen to induce apoptosis associated with Caspase-3 activation in breast cancer cells in vitro and in vivo. Biomed Pharmacother. 2017 May;89:827-837. doi: 10.1016/j.biopha.2017.01.084. | Click |
9 | Cucurbitacin B and cisplatin induce the cell death pathways in MB49 mouse bladder cancer model. Exp Biol Med (Maywood). 2020 May;245(9):805-814. doi: 10.1177/1535370220917367. | Click |
10 | (-)-Epigallocatechin Gallate (EGCG) Enhances the Sensitivity of Colorectal Cancer Cells to 5-FU by Inhibiting GRP78/NF-κB/miR-155-5p/MDR1 Pathway. J Agric Food Chem. 2019 Mar 6;67(9):2510-2518. doi: 10.1021/acs.jafc.8b06665. | Click |
11 | Green tea polyphenol EGCG sensitizes human prostate carcinoma LNCaP cells to TRAIL-mediated apoptosis and synergistically inhibits biomarkers associated with angiogenesis and metastasis. Oncogene. 2008 Mar 27;27(14):2055-63. doi: 10.1038/sj.onc.1210840. | Click |
12 | Furanodiene enhances the anti-cancer effects of doxorubicin on ERα-negative breast cancer cells in vitro. Eur J Pharmacol. 2016 Mar 5;774:10-9. doi: 10.1016/j.ejphar.2015.11.039. | Click |
13 | The tocotrienol-rich fraction from rice bran enhances cisplatin-induced cytotoxicity in human mesothelioma H28 cells. Phytother Res. 2010 Sep;24(9):1317-21. doi: 10.1002/ptr.3107. | Click |
14 | Targeting apoptosis in the hormone- and drug-resistant prostate cancer cell line, DU-145, by gossypol/zoledronic acid combination. Cell Biol Int. 2009 Nov;33(11):1165-72. doi: 10.1016/j.cellbi.2009.08.006. | Click |
15 | Indomethacin and juglone inhibit inflammatory molecules to induce apoptosis in colon cancer cells. J Biochem Mol Toxicol. 2020 Feb;34(2):e22433. doi: 10.1002/jbt.22433. | Click |
16 | Synergistic effect between celecoxib and luteolin is dependent on estrogen receptor in human breast cancer cells. Tumour Biol. 2015 Aug;36(8):6349-59. doi: 10.1007/s13277-015-3322-5. | Click |
17 | Luteolin enhances erlotinib's cell proliferation inhibitory and apoptotic effects in glioblastoma cell lines. Front Pharmacol. 2022 Sep 19;13:952169. doi: 10.3389/fphar.2022.952169. | Click |
18 | Combination treatment with flavonoid morin and telomerase inhibitor MST‑312 reduces cancer stem cell traits by targeting STAT3 and telomerase. Int J Oncol. 2016 Aug;49(2):487-98. doi: 10.3892/ijo.2016.3546. | Click |
19 | Glioma progression is suppressed by Naringenin and APO2L combination therapy via the activation of apoptosis in vitro and in vivo. Invest New Drugs. 2020 Dec;38(6):1743-1754. doi: 10.1007/s10637-020-00979-2. | Click |
20 | Oridonin Synergistically Enhances the Pro-Apoptotic Effect of Venetoclax on Acute Myeloid Leukemia Cells by Inhibiting AKT Signaling. Front Biosci (Landmark Ed). 2023 Sep 6;28(9):195. doi: 10.31083/j.fbl2809195. | Click |
21 | OSW-1 induces apoptosis and cyto-protective autophagy, and synergizes with chemotherapy on triple negative breast cancer metastasis. Cell Oncol (Dordr). 2022 Dec;45(6):1255-1275. doi: 10.1007/s13402-022-00716-2. | Click |
22 | Phenethyl isothiocyanate and irinotecan synergistically induce cell apoptosis in colon cancer HCT 116 cells in vitro. Environ Toxicol. 2024 Jan;39(1):457-469. doi: 10.1002/tox.23993. | Click |
23 | Shikonin inhibits gefitinib-resistant non-small cell lung cancer by inhibiting TrxR and activating the EGFR proteasomal degradation pathway. Pharmacol Res. 2017;115:45-55. doi:10.1016/j.phrs.2016.11.011 | Click |