Name | Mitogen-activated protein kinase 3 | ||
UniProt ID | MK03_HUMAN | ||
Gene Name | MAPK3 | ||
Gene ID | 5595 | ||
Synonyms |
MAPK3, ERK-1, ERK1, ERT2, HS44KDAP, HUMKER1A, P44ERK1, P44MAPK, PRKM3, p44-ERK1, p44-MAPK
|
||
Sequence |
MAAAAAQGGGGGEPRRTEGVGPGVPGEVEMVKGQPFDVGPRYTQLQYIGEGAYGMVSSAY
DHVRKTRVAIKKISPFEHQTYCQRTLREIQILLRFRHENVIGIRDILRASTLEAMRDVYI VQDLMETDLYKLLKSQQLSNDHICYFLYQILRGLKYIHSANVLHRDLKPSNLLINTTCDL KICDFGLARIADPEHDHTGFLTEYVATRWYRAPEIMLNSKGYTKSIDIWSVGCILAEMLS NRPIFPGKHYLDQLNHILGILGSPSQEDLNCIINMKARNYLQSLPSKTKVAWAKLFPKSD SKALDLLDRMLTFNPNKRITVEEALAHPYLEQYYDPTDEPVAEEPFTFAMELDDLPKERL KELIFQETARFQPGVLEAP |
||
Pathway Map | MAP LINK | ||
T.C. Number | 9.A.14.8.3 | ||
KEGG ID | hsa5595 | ||
TTD ID | T23276 | ||
Pfam | PF00069; PF01633; PF01636; PF03109; PF06293; PF07714; PF12330; PF13095 |
Pair Name | Amentoflavone, Sorafenib | |||
Phytochemical | Amentoflavone | |||
Drug | Sorafenib | |||
Disease Info | [ICD-11: 2C12] | Hepatocellular carcinoma | Investigative | |
Regulate Info | Down-regulation | Mitogen-activated protein kinase 3 | Phosphorylation | |
Result | Our results demonstrated that amentoflavone significantly enhanced sorafenib-inhibited tumor growth and expression of ERK/AKT phosphorylation and anti-apoptotic proteins compared to single-agent treatment. Additionally, amentoflavone also triggered sorafenib-induced apoptosis through extrinsic and intrinsic apoptotic pathways. |
Pair Name | Apigenin, TNF-related apoptosis inducing ligand | |||
Phytochemical | Apigenin | |||
Drug | TNF-related apoptosis inducing ligand | |||
Disease Info | [ICD-11: 2D10.Z] | Thyroid cancer | Investigative | |
Regulate Info | Up-regulation | Mitogen-activated protein kinase 3 | Phosphorylation | |
Result | Apigenin synergizes with TRAIL through regulation of Bcl2 family proteins in inducing cytotoxicity, and suppression of AKT potentiates synergistic cytotoxicity of apigenin with TRAIL in ATC cells |
Pair Name | Apigenin, TNF-related apoptosis inducing ligand | |||
Phytochemical | Apigenin | |||
Drug | TNF-related apoptosis inducing ligand | |||
Disease Info | [ICD-11: 2C25] | Lung cancer | Investigative | |
Regulate Info | Down-regulation | Mitogen-activated protein kinase 3 | Expression | |
Result | Apigenin enhances TRAIL-induced antitumor activity in NSCLC cells by APG via inhibition of the NF-kappaB, AKT and ERK prosurvival regulators |
Pair Name | Artesunate, Cisplatin | |||
Phytochemical | Artesunate | |||
Drug | Cisplatin | |||
Disease Info | [ICD-11: 2C25] | Lung cancer | Investigative | |
Regulate Info | Down-regulation | Mitogen-activated protein kinase 3 | Phosphorylation | |
Result | ART exhibited significant anti-tumor effect on A549 cells and this efficiency could be enhanced by combination with CIS |
Pair Name | Beta-Elemene, Temozolomide | |||
Phytochemical | Beta-Elemene | |||
Drug | Temozolomide | |||
Disease Info | [ICD-11: 2A00] | Glioblastoma multiforme | Investigative | |
Regulate Info | Down-regulation | Mitogen-activated protein kinase 3 | Expression | |
Result | These results revealed that β-elemene could significantly increase the radiosensitivity and chemosensitivity of GBM. β-elemene may be used as a potential drug in combination with the radiotherapy and chemotherapy of GBM |
Pair Name | Biochanin A, Temozolomide | |||
Phytochemical | Biochanin A | |||
Drug | Temozolomide | |||
Disease Info | [ICD-11: 2A00] | Glioblastoma multiforme | Investigative | |
Regulate Info | Down-regulation | Mitogen-activated protein kinase 3 | Phosphorylation | |
Result | Chanin A significantly enhanced the anticancer efficacy of temozolomide in GBM cells. |
Pair Name | Bufalin, TNF-related apoptosis inducing ligand | |||
Phytochemical | Bufalin | |||
Drug | TNF-related apoptosis inducing ligand | |||
Disease Info | [ICD-11: 2C60] | Breast cancer | Investigative | |
Regulate Info | Up-regulation | Mitogen-activated protein kinase 3 | Expression | |
Result | Bufalin enhanced TRAIL-induced apoptosis by up-regulating the expression of DR4 and DR5. Bufalin-induced down-regulation of Cbl-b contributed to the up-regulation of DR4 and DR5, which might be partially mediated by the activation of ERK, JNK and p38 MAPK. |
Pair Name | Caffeic acid, Paclitaxel | |||
Phytochemical | Caffeic acid | |||
Drug | Paclitaxel | |||
Disease Info | [ICD-11: 2C25] | Lung cancer | Investigative | |
Regulate Info | Up-regulation | Mitogen-activated protein kinase 3 | Phosphorylation | |
Result | Our results indicated that CA inhibited NSCLC H1299 cell growth by inducing apoptosis and CA and PTX combined produced a synergistic anti-cancer effect in H1299 cells. |
Pair Name | Chlorogenic acid, Doxorubicin | |||
Phytochemical | Chlorogenic acid | |||
Drug | Doxorubicin | |||
Disease Info | [ICD-11: 2B51] | Osteosarcoma | Investigative | |
Regulate Info | Down-regulation | Mitogen-activated protein kinase 3 | Phosphorylation | |
Result | These findings firstly propose CGA as a promising chemosensitizer and cardioprotective agent in OS therapy, suggesting the p44/42 MAPK pathway as relevantly involved in CGA-mediated Doxo susceptibility. |
Pair Name | Chlorogenic acid, Fluorouracil | |||
Phytochemical | Chlorogenic acid | |||
Drug | Fluorouracil | |||
Disease Info | [ICD-11: 2C12] | Hepatocellular carcinoma | Investigative | |
Regulate Info | Down-regulation | Mitogen-activated protein kinase 3 | Expression | |
Result | CGA sensitizes hepatocellular carcinoma cells to 5-FU treatment by the suppression of ERK activation through the overproduction of ROS. CGA has shown potential as a chemosensitizer of 5-FU chemotherapy in hepatocellular carcinoma. |
Pair Name | Chrysin, Cisplatin | |||
Phytochemical | Chrysin | |||
Drug | Cisplatin | |||
Disease Info | [ICD-11: 2C12] | Hepatocellular carcinoma | Investigative | |
Regulate Info | Up-regulation | Mitogen-activated protein kinase 3 | Expression | |
Result | Our results suggest that combination of chrysin and cisplatin is a promising strategy for chemotherapy of human cancers that are resistant to cisplatin. |
Pair Name | Cucurbitacin B, Doxorubicin | |||
Phytochemical | Cucurbitacin B | |||
Drug | Doxorubicin | |||
Disease Info | [ICD-11: 2D10.Z] | Thyroid cancer | Investigative | |
Regulate Info | Up-regulation | Mitogen-activated protein kinase 3 | Phosphorylation | |
Result | Synergistic cytotoxicity of doxorubicin with cucurbitacin B is mediated by B-cell chronic lymphocytic leukemia/lymphoma 2 family proteins, survivin, and reactive oxygen species and modulated by Janus kinase 2/signal transducer and activator of transcription 3 and extracellular signal-regulated kinase 1/2 in anaplastic thyroid carcinoma cells. |
Pair Name | Curcumin, TNF-related apoptosis inducing ligand | |||
Phytochemical | Curcumin | |||
Drug | TNF-related apoptosis inducing ligand | |||
Disease Info | [ICD-11: 2C25] | Lung cancer | Investigative | |
Regulate Info | Up-regulation | Mitogen-activated protein kinase 3 | Phosphorylation | |
Result | Combined treatment with curcumin and carboplatin inhibited tumor cell growth, migration, and invasion compared with either drug alone. The synergistic antitumor activity of curcumin combined with carboplatin is mediated by multiple mechanisms involving suppression of NF-kappaB via inhibition of the Akt/IKKalpha pathway and enhanced ERK1/2 activity |
Pair Name | Daurinoline, Sorafenib | |||
Phytochemical | Daurinoline | |||
Drug | Sorafenib | |||
Disease Info | [ICD-11: 2C12] | Hepatocellular carcinoma | Investigative | |
Regulate Info | Down-regulation | Mitogen-activated protein kinase 3 | Phosphorylation | |
Result | Our study provides insights into the molecular mechanisms underlying DS-induced inhibition of VM, which may facilitate the development of a novel clinical anti-HCC drug. Moreover, our findings suggest that the combination of DS and sorafenib constitutes a potential therapeutic strategy for HCC. |
Pair Name | Embelin, TRAIL | |||
Phytochemical | Embelin | |||
Drug | TRAIL | |||
Disease Info | [ICD-11: 2C60] | Breast cancer | Investigative | |
Regulate Info | Down-regulation | Mitogen-activated protein kinase 3 | Expression | |
Result | Embelin primes IBC cells for TRAIL-mediated apoptosis by its direct action on the anti-caspase activity of XIAP and by shifting the cellular redox balance toward oxidative stress–mediated apoptosis |
Pair Name | Emodin, Cytarabine | |||
Phytochemical | Emodin | |||
Drug | Cytarabine | |||
Disease Info | [ICD-11: 2A60.Z] | Acute myeloid leukemia | Investigative | |
Regulate Info | Down-regulation | Mitogen-activated protein kinase 3 | Phosphorylation | |
Result | Emodin and its combination with Ara-C may be considered a promising therapeutic approach in AML and worthy of further investigation. |
Pair Name | Fisetin, Sorafenib | |||
Phytochemical | Fisetin | |||
Drug | Sorafenib | |||
Disease Info | [ICD-11: 2C30] | Melanoma | Investigative | |
Regulate Info | Down-regulation | Mitogen-activated protein kinase 3 | Expression | |
Result | Fisetin potentiates sorafenib-induced apoptosis and abrogates tumor growth in athymic nude mice implanted with BRAF-mutated melanoma cells. |
Pair Name | Gambogic Acid, Cisplatin | |||
Phytochemical | Gambogic Acid | |||
Drug | Cisplatin | |||
Disease Info | [ICD-11: 2C25] | Lung cancer | Investigative | |
Regulate Info | Down-regulation | Mitogen-activated protein kinase 3 | Phosphorylation | |
Result | Gambogic acid sensitises lung cancer cells to CDDP in vitro and in vivo in NSCLC through inactivation of NF-κB and MAPK/HO-1 signalling pathways, providing a rationale for the combined use of CDDP and GA in lung cancer chemotherapy. |
Pair Name | Gossypol, lenalidomide | |||
Phytochemical | Gossypol | |||
Drug | lenalidomide | |||
Disease Info | [ICD-11: 2A82] | Chronic lymphocytic leukemia | Investigative | |
Regulate Info | Up-regulation | Mitogen-activated protein kinase 3 | Phosphorylation | |
Result | Downregulation of BCL2 by AT-101 enhances the antileukaemic effect of lenalidomide both by an immune dependant and independent manner. |
Pair Name | Honokiol, Oxaliplatin | |||
Phytochemical | Honokiol | |||
Drug | Oxaliplatin | |||
Disease Info | [ICD-11: 2B90] | Colon cancer | Investigative | |
Regulate Info | Down-regulation | Mitogen-activated protein kinase 3 | Expression | |
Result | This combination allows a reduction in oxaliplatin dose, and thereby reduces its adverse effects. It may also enhance the chemotherapeutic effect of oxaliplatin for this disease. |
Pair Name | Licochalcone B, TNF-related apoptosis inducing ligand | |||
Phytochemical | Licochalcone B | |||
Drug | TNF-related apoptosis inducing ligand | |||
Disease Info | [ICD-11: 2C12] | Hepatocellular carcinoma | Investigative | |
Regulate Info | Up-regulation | Mitogen-activated protein kinase 3 | Phosphorylation | |
Result | LCB exhibits cytotoxic activity through modulation of the Akt/mTOR, ER stress and MAPK pathways in HCC cells and effectively enhances TRAIL sensitivity through the upregulation of DR5 expression in ERK- and JNK-dependent manner. Combination therapy with LCB and TRAIL may be an alternative treatment strategy for HCC. |
Pair Name | Sulforaphene, Carboplatin | |||
Phytochemical | Sulforaphene | |||
Drug | Carboplatin | |||
Disease Info | [ICD-11: 2C25] | Lung cancer | Investigative | |
Regulate Info | Down-regulation | Mitogen-activated protein kinase 3 | Phosphorylation | |
Result | This study demonstrates that the duel character of this combination therapy may be an effective replacement for conventional therapy alone against NSCLC. |
Pair Name | Sulforaphene, Photodynamic therapy | |||
Phytochemical | Sulforaphene | |||
Drug | Photodynamic therapy | |||
Disease Info | [ICD-11: 2D10.Z] | Thyroid cancer | Investigative | |
Regulate Info | Down-regulation | Mitogen-activated protein kinase 3 | Phosphorylation | |
Result | Our work designates sulforaphene as a unique natural enhancer of efficacy with PDT against anaplastic thyroid cancer. |
Pair Name | Usnic acid, Sorafenib | |||
Phytochemical | Usnic acid | |||
Drug | Sorafenib | |||
Disease Info | [ICD-11: 2C12] | Hepatocellular carcinoma | Investigative | |
Regulate Info | Down-regulation | Mitogen-activated protein kinase 3 | Expression | |
Result | Investigation of new treatment option for hepatocellular carcinoma: a combination of sorafenib with usnic acid |
Pair Name | Beta-Elemene, Oxaliplatin | |||
Phytochemical | Beta-Elemene | |||
Drug | Oxaliplatin | |||
Disease Info | [ICD-11: 2B91] | Colorectal cancer | Investigative | |
Regulate Info | Down-regulation | Mitogen-activated protein kinase 3 | Phosphorylation | |
Result | Our findings show that β-elemene can block the reduction of CTR1 resulting from oxaliplatin treatment, and therefore has a synergistic anti-HCC effect with oxaliplatin by enhancing cellular uptake of oxaliplatin. The synergistic effects of β-elemene and oxaliplatin deserve further evaluation in clinical settings. |
Pair Name | Gambogic Acid, Gefitinib | |||
Phytochemical | Gambogic Acid | |||
Drug | Gefitinib | |||
Disease Info | [ICD-11: 2C25] | Lung cancer | Investigative | |
Regulate Info | Down-regulation | Mitogen-activated protein kinase 3 | Phosphorylation | |
Result | Gefitinib in combination with GA resulted in antitumor growth in the EGFR-T790M secondary mutation NCI-H1975 tumor model due to an enhanced apoptotic effect. This novel therapeutic strategy may be a practical approach for the treatment of patients who show gefitinib resistance. |
Pair Name | Scutellarin, Cisplatin | |||
Phytochemical | Scutellarin | |||
Drug | Cisplatin | |||
Disease Info | [ICD-11: 2C25] | Lung cancer | Investigative | |
Regulate Info | Up-regulation | Mitogen-activated protein kinase 3 | Phosphorylation | |
Result | This study identifies the unique role of scutellarin in reversing cisplatin resistance through apoptosis and autophagy, and suggests that combined cisplatin and scutellarin might be a novel therapeutic strategy for patients with NSCLC. |
No. | Title | Href |
---|---|---|
1 | Amentoflavone Enhances the Therapeutic Efficacy of Sorafenib by Inhibiting Anti-apoptotic Potential and Potentiating Apoptosis in Hepatocellular Carcinoma In Vivo. Anticancer Res. 2018 Apr;38(4):2119-2125. doi: 10.21873/anticanres.12452. | Click |
2 | Suppression of AKT Potentiates Synergistic Cytotoxicity of Apigenin with TRAIL in Anaplastic Thyroid Carcinoma Cells. Anticancer Res. 2015 Dec;35(12):6529-37. | Click |
3 | Apigenin potentiates TRAIL therapy of non-small cell lung cancer via upregulating DR4/DR5 expression in a p53-dependent manner. Sci Rep. 2016 Oct 18;6:35468. doi: 10.1038/srep35468. | Click |
4 | Artesunate exhibits synergistic anti-cancer effects with cisplatin on lung cancer A549 cells by inhibiting MAPK pathway. Gene. 2021 Jan 15;766:145134. doi: 10.1016/j.gene.2020.145134. | Click |
5 | β-elemene enhances both radiosensitivity and chemosensitivity of glioblastoma cells through the inhibition of the ATM signaling pathway. Oncol Rep. 2015 Aug;34(2):943-51. doi: 10.3892/or.2015.4050. | Click |
6 | Combination of Biochanin A and Temozolomide Impairs Tumor Growth by Modulating Cell Metabolism in Glioblastoma Multiforme. Anticancer Res. 2019 Jan;39(1):57-66. doi: 10.21873/anticanres.13079. | Click |
7 | Down-regulation of Cbl-b by bufalin results in up-regulation of DR4/DR5 and sensitization of TRAIL-induced apoptosis in breast cancer cells. J Cancer Res Clin Oncol. 2012 Aug;138(8):1279-89. doi: 10.1007/s00432-012-1204-4. | Click |
8 | Synergistic Anticancer Activity of Combined Use of Caffeic Acid with Paclitaxel Enhances Apoptosis of Non-Small-Cell Lung Cancer H1299 Cells in Vivo and in Vitro. Cell Physiol Biochem. 2018;48(4):1433-1442. doi: 10.1159/000492253. | Click |
9 | Chlorogenic Acid Enhances Doxorubicin-Mediated Cytotoxic Effect in Osteosarcoma Cells. Int J Mol Sci. 2021 Aug 10;22(16):8586. doi: 10.3390/ijms22168586. | Click |
10 | Chlorogenic acid enhances the effects of 5-fluorouracil in human hepatocellular carcinoma cells through the inhibition of extracellular signal-regulated kinases. Anticancer Drugs. 2015 Jun;26(5):540-6. doi: 10.1097/CAD.0000000000000218. | Click |
11 | Combination of chrysin and cisplatin promotes the apoptosis of Hep G2 cells by up-regulating p53. Chem Biol Interact. 2015 May 5;232:12-20. doi: 10.1016/j.cbi.2015.03.003. | Click |
12 | Doxorubicin has a synergistic cytotoxicity with cucurbitacin B in anaplastic thyroid carcinoma cells. Tumour Biol. 2017 Feb;39(2):1010428317692252. doi: 10.1177/1010428317692252. | Click |
13 | Curcumin sensitizes human lung cancer cells to apoptosis and metastasis synergistically combined with carboplatin. Exp Biol Med (Maywood). 2015 Nov;240(11):1416-25. doi: 10.1177/1535370215571881. | Click |
14 | The role of daurisoline treatment in hepatocellular carcinoma: Inhibiting vasculogenic mimicry formation and enhancing sensitivity to sorafenib. Phytomedicine. 2021 Nov;92:153740. doi: 10.1016/j.phymed.2021.153740. | Click |
15 | XIAP inhibition and generation of reactive oxygen species enhances TRAIL sensitivity in inflammatory breast cancer cells. Mol Cancer Ther. 2012;11(7):1518-1527. doi:10.1158/1535-7163.MCT-11-0787 | Click |
16 | Emodin and Its Combination with Cytarabine Induce Apoptosis in Resistant Acute Myeloid Leukemia Cells in Vitro and in Vivo. Cell Physiol Biochem. 2018;48(5):2061-2073. doi: 10.1159/000492544. | Click |
17 | Fisetin, a phytochemical, potentiates sorafenib-induced apoptosis and abrogates tumor growth in athymic nude mice implanted with BRAF-mutated melanoma cells. Oncotarget. 2015 Sep 29;6(29):28296-311. doi: 10.18632/oncotarget.5064. | Click |
18 | Gambogic acid synergistically potentiates cisplatin-induced apoptosis in non-small-cell lung cancer through suppressing NF-κB and MAPK/HO-1 signalling. Br J Cancer. 2014 Jan 21;110(2):341-52. doi: 10.1038/bjc.2013.752. | Click |
19 | Downregulation of BCL2 by AT-101 enhances the antileukaemic effect of lenalidomide both by an immune dependant and independent manner. Br J Haematol. 2012 Apr;157(1):59-66. doi: 10.1111/j.1365-2141.2011.08984.x. | Click |
20 | Honokiol augments the anti-cancer effects of oxaliplatin in colon cancer cells. Acta Biochim Biophys Sin (Shanghai). 2013 Sep;45(9):773-9. doi: 10.1093/abbs/gmt071. | Click |
21 | Licochalcone B induces DNA damage, cell cycle arrest, apoptosis, and enhances TRAIL sensitivity in hepatocellular carcinoma cells. Chem Biol Interact. 2022 Sep 25;365:110076. doi: 10.1016/j.cbi.2022.110076. | Click |
22 | Sulforaphene-Carboplatin Combination Synergistically Enhances Apoptosis by Disruption of Mitochondrial Membrane Potential and Cell Cycle Arrest in Human Non-Small Cell Lung Carcinoma. J Med Food. 2016 Sep;19(9):860-9. doi: 10.1089/jmf.2016.3675. | Click |
23 | Sulforaphene Enhances The Efficacy of Photodynamic Therapy In Anaplastic Thyroid Cancer Through Ras/RAF/MEK/ERK Pathway Suppression. J Photochem Photobiol B. 2018 Feb;179:46-53. doi: 10.1016/j.jphotobiol.2017.12.013. | Click |
24 | Investigation of new treatment option for hepatocellular carcinoma: a combination of sorafenib with usnic acid. J Pharm Pharmacol. 2019 Jul;71(7):1119-1132. doi: 10.1111/jphp.13097. | Click |
25 | β-elemene sensitizes hepatocellular carcinoma cells to oxaliplatin by preventing oxaliplatin-induced degradation of copper transporter 1. Sci Rep. 2016 Feb 12;6:21010. doi: 10.1038/srep21010. | Click |
26 | Combined therapy with EGFR TKI and gambogic acid for overcoming resistance in EGFR-T790M mutant lung cancer. Oncol Lett. 2015 Oct;10(4):2063-2066. doi: 10.3892/ol.2015.3599. | Click |
27 | Scutellarin Increases Cisplatin-Induced Apoptosis and Autophagy to Overcome Cisplatin Resistance in Non-small Cell Lung Cancer via ERK/p53 and c-met/AKT Signaling Pathways. Front Pharmacol. 2018 Feb 13;9:92. doi: 10.3389/fphar.2018.00092. | Click |