Name | Hypoxia-inducible factor 1-alpha | ||
UniProt ID | HIF1A_HUMAN | ||
Gene Name | HIF1A | ||
Gene ID | 3091 | ||
Synonyms |
HIF1A, HIF-1-alpha, HIF-1A, HIF-1alpha, HIF1, HIF1-ALPHA, MOP1, PASD8, bHLHe78
|
||
Sequence |
MEGAGGANDKKKISSERRKEKSRDAARSRRSKESEVFYELAHQLPLPHNVSSHLDKASVM
RLTISYLRVRKLLDAGDLDIEDDMKAQMNCFYLKALDGFVMVLTDDGDMIYISDNVNKYM GLTQFELTGHSVFDFTHPCDHEEMREMLTHRNGLVKKGKEQNTQRSFFLRMKCTLTSRGR TMNIKSATWKVLHCTGHIHVYDTNSNQPQCGYKKPPMTCLVLICEPIPHPSNIEIPLDSK TFLSRHSLDMKFSYCDERITELMGYEPEELLGRSIYEYYHALDSDHLTKTHHDMFTKGQV TTGQYRMLAKRGGYVWVETQATVIYNTKNSQPQCIVCVNYVVSGIIQHDLIFSLQQTECV LKPVESSDMKMTQLFTKVESEDTSSLFDKLKKEPDALTLLAPAAGDTIISLDFGSNDTET DDQQLEEVPLYNDVMLPSPNEKLQNINLAMSPLPTAETPKPLRSSADPALNQEVALKLEP NPESLELSFTMPQIQDQTPSPSDGSTRQSSPEPNSPSEYCFYVDSDMVNEFKLELVEKLF AEDTEAKNPFSTQDTDLDLEMLAPYIPMDDDFQLRSFDQLSPLESSSASPESASPQSTVT VFQQTQIQEPTANATTTTATTDELKTVTKDRMEDIKILIASPSPTHIHKETTSATSSPYR DTQSRTASPNRAGKGVIEQTEKSHPRSPNVLSVALSQRTTVPEEELNPKILALQNAQRKR KMEHDGSLFQAVGIGTLLQQPDDHAATTSLSWKRVKGCKSSEQNGMEQKTIILIPSDLAC RLLGQSMDESGLPQLTSYDCEVNAPIQGSRNLLQGEELLRALDQVN |
||
Pathway Map | MAP LINK | ||
T.C. Number | 8.A.92.1.4 | ||
KEGG ID | hsa3091 | ||
TTD ID | T55610 | ||
Pfam | PF00010; PF00989; PF08447; PF08448; PF08778; PF09756; PF11413; PF13426; PF14598 |
Pair Name | Carvacrol, Sorafenib | |||
Phytochemical Name | Carvacrol | |||
Anticancer drug Name | Sorafenib | |||
Disease Info | [ICD-11: 2C12] | Hepatocellular carcinoma | Investigative | |
Regulate Info | Down-regulation | Hypoxia-inducible factor 1-alpha | Expression | |
Result | CARV/Sora is a promising combination for tumor suppression and overcoming Sora resistance and cardiotoxicity in HCC by modulating TRPM7. To our best knowledge, this study represents the first study to investigate the efficiency of CARV/ Sora on the HCC rat model. Moreover, no previous studies have reported the effect of inhibiting TRPM7 on HCC. |
Pair Name | Lupeol, Paclitaxel | |||
Phytochemical Name | Lupeol | |||
Anticancer drug Name | Paclitaxel | |||
Disease Info | [ICD-11: 2B66.0] | Oral squamous cell carcinoma | Investigative | |
Regulate Info | Down-regulation | Hypoxia-inducible factor 1-alpha | Expression | |
Result | Our findings elucidated mechanistic underpinning of hypoxia induced Laminin-5γ2 driven VM formation highlighting that Lupeol-Paclitaxel combination may serve as novel therapeutic intervention in perturbation of VM in human OSCC. |
Pair Name | Polydatin, 2-Deoxy-d-glucose | |||
Phytochemical Name | Polydatin | |||
Anticancer drug Name | 2-Deoxy-d-glucose | |||
Disease Info | [ICD-11: 2C60] | Breast cancer | Investigative | |
Regulate Info | Down-regulation | Hypoxia-inducible factor 1-alpha | Expression | |
Result | Our study demonstrates that PD synergised with 2-DG to enhance its anti-cancer efficacy by inhibiting the ROS/PI3K/AKT/HIF-1α/HK2 signalling axis, providing a potential anti-cancer strategy. |
Pair Name | Apigenin, Gefitinib | |||
Phytochemical | Apigenin | |||
Drug | Gefitinib | |||
Disease Info | [ICD-11: 2C25] | Lung cancer | Investigative | |
Regulate Info | Down-regulation | Hypoxia-inducible factor 1-alpha | Expression | |
Result | Apigenin Combined With Gefitinib Blocks Autophagy Flux and Induces Apoptotic Cell Death Through Inhibition of HIF-1α, c-Myc, p-EGFR, and Glucose Metabolism in EGFR L858R+T790M-Mutated H1975 Cells |
Pair Name | Astaxanthin, Sorafenib | |||
Phytochemical | Astaxanthin | |||
Drug | Sorafenib | |||
Disease Info | [ICD-11: 2C12] | Hepatocellular carcinoma | Investigative | |
Regulate Info | Up-regulation | Hypoxia-inducible factor 1-alpha | Expression | |
Result | Astaxanthin Augmented the Anti-Hepatocellular Carcinoma Efficacy of Sorafenib Through the Inhibition of the JAK2/STAT3 Signaling Pathway and Mitigation of Hypoxia within the Tumor Microenvironment |
Pair Name | Curcumenol, Cisplatin | |||
Phytochemical | Curcumenol | |||
Drug | Cisplatin | |||
Disease Info | [ICD-11: 2C77] | Cervical cancer | Investigative | |
Regulate Info | Down-regulation | Hypoxia-inducible factor 1-alpha | Expression | |
Result | Curcumenol can enhance cisplatin to inhibit cancer cell proliferation, migration, and invasion and promote tumor cell apoptosis. The combination of drugs may promote the apoptosis of cervical cancer cells through the YWHAG pathway. |
Pair Name | Pterostilbene, Vorinostat | |||
Phytochemical | Pterostilbene | |||
Drug | Vorinostat | |||
Disease Info | [ICD-11: 2C82] | Prostate cancer | Investigative | |
Regulate Info | Down-regulation | Hypoxia-inducible factor 1-alpha | Expression | |
Result | Our study provides preclinical evidence that Pter/SAHA combination treatment inhibits MTA1/HIF-1α tumor-promoting signaling in PCa. The beneficial outcome of combinatorial strategy using a natural agent and an approved drug for higher efficacy and less toxicity supports further development of MTA1-targeted therapies in PCa. |
Pair Name | Resveratrol, Sorafenib | |||
Phytochemical | Resveratrol | |||
Drug | Sorafenib | |||
Disease Info | [ICD-11: 2C90.0] | Renal cell carcinoma | Investigative | |
Regulate Info | Down-regulation | Hypoxia-inducible factor 1-alpha | Expression | |
Result | PEGylated resveratrol combined with sorafenib can achieve synergistic anti-RCC activity, and the mechanism may be related to the inhibition of Akt/mTOR/p70S6k-4EBP-1 and c-Raf7MEK/ERK signaling pathways. |
Pair Name | Rhizoma Paridis saponins, Sorafenib | |||
Phytochemical | Rhizoma Paridis saponins | |||
Drug | Sorafenib | |||
Disease Info | [ICD-11: 2C12] | Hepatocellular carcinoma | Investigative | |
Regulate Info | Down-regulation | Hypoxia-inducible factor 1-alpha | Expression | |
Result | All of that provided possibility to overcome the intolerance of sorafenib by drug compatibility through protection against mitochondria damage, inhibition of anaerobic glycolysis and suppression of lipid synthesis based on PI3K/Akt/mTOR pathway. |
Pair Name | Thymoquinone, Gemcitabine | |||
Phytochemical | Thymoquinone | |||
Drug | Gemcitabine | |||
Disease Info | [ICD-11: 2C10] | Pancreatic cancer | Investigative | |
Regulate Info | Down-regulation | Hypoxia-inducible factor 1-alpha | Expression | |
Result | TQ can promote apoptosis, inhibit migration, invasion, and metastasis, and enhance the sensitivity to GEM. The underlying mechanism may involve the regulation of ECM production through the TGFβ/Smad pathway, in which HIF-1α plays a key role. |
Pair Name | Ursolic acid, Cisplatin | |||
Phytochemical | Ursolic acid | |||
Drug | Cisplatin | |||
Disease Info | [ICD-11: 2C73] | Ovarian cancer | Investigative | |
Regulate Info | Down-regulation | Hypoxia-inducible factor 1-alpha | Expression | |
Result | UA inhibits the proliferation and reversal of drug resistance in ovarian CSCs by suppressing the expression of downregulation of HIF-1α and ABCG2. |
Pair Name | Tanshinone I, Epirubicin | |||
Phytochemical | Tanshinone I | |||
Drug | Epirubicin | |||
Disease Info | [ICD-11: 2C12] | Hepatocellular carcinoma | Investigative | |
Regulate Info | Down-regulation | Hypoxia-inducible factor 1-alpha | Expression | |
Result | Our results suggested that Tan I could effectively improve the anti-tumor effect of EADM, and synergize EADM to reverse HIF-1α mediated resistance via targeting PI3K/AKT/HIF-1α signaling pathway. |
No. | Title | Href |
---|---|---|
1 | Carvacrol enhances anti-tumor activity and mitigates cardiotoxicity of sorafenib in thioacetamide-induced hepatocellular carcinoma model through inhibiting TRPM7. Life Sci. 2023 Jul 1;324:121735. doi: 10.1016/j.lfs.2023.121735. | Click |
2 | Lupeol and Paclitaxel cooperate in hindering hypoxia induced vasculogenic mimicry via suppression of HIF-1α-EphA2-Laminin-5γ2 network in human oral cancer. J Cell Commun Signal. 2023 Sep;17(3):591-608. doi: 10.1007/s12079-022-00693-z. | Click |
3 | Targeting the ROS/PI3K/AKT/HIF-1α/HK2 axis of breast cancer cells: Combined administration of Polydatin and 2-Deoxy-d-glucose. J Cell Mol Med. 2019 May;23(5):3711-3723. doi: 10.1111/jcmm.14276. | Click |
4 | Apigenin Combined With Gefitinib Blocks Autophagy Flux and Induces Apoptotic Cell Death Through Inhibition of HIF-1α, c-Myc, p-EGFR, and Glucose Metabolism in EGFR L858R+T790M-Mutated H1975 Cells. Front Pharmacol. 2019 Mar 22;10:260. doi: 10.3389/fphar.2019.00260. | Click |
5 | Astaxanthin Augmented the Anti-Hepatocellular Carcinoma Efficacy of Sorafenib Through the Inhibition of the JAK2/STAT3 Signaling Pathway and Mitigation of Hypoxia within the Tumor Microenvironment. Mol Nutr Food Res. 2024 Jan;68(2):e2300569. doi: 10.1002/mnfr.202300569. | Click |
6 | Curcumenol Targeting YWHAG Inhibits the Pentose Phosphate Pathway and Enhances Antitumor Effects of Cisplatin. Evid Based Complement Alternat Med. 2022 Jun 26;2022:3988916. doi: 10.1155/2022/3988916. | Click |
7 | Targeting MTA1/HIF-1α signaling by pterostilbene in combination with histone deacetylase inhibitor attenuates prostate cancer progression. Cancer Med. 2017 Nov;6(11):2673-2685. doi: 10.1002/cam4.1209. | Click |
8 | Synergistic anti-tumour activity of sorafenib in combination with pegylated resveratrol is mediated by Akt/mTOR/p70S6k-4EBP-1 and c-Raf7MEK/ERK signaling pathways. Heliyon. 2023 Aug 19;9(8):e19154. doi: 10.1016/j.heliyon.2023.e19154. | Click |
9 | Combinatorial treatment of Rhizoma Paridis saponins and sorafenib overcomes the intolerance of sorafenib. J Steroid Biochem Mol Biol. 2018 Oct;183:159-166. doi: 10.1016/j.jsbmb.2018.06.010. | Click |
10 | Thymoquinone affects the gemcitabine sensitivity of pancreatic cancer by regulating collagen via hypoxia inducible factor-1α. Front Pharmacol. 2023 May 31;14:1138265. doi: 10.3389/fphar.2023.1138265. | Click |
11 | Ursolic acid inhibits proliferation and reverses drug resistance of ovarian cancer stem cells by downregulating ABCG2 through suppressing the expression of hypoxia-inducible factor-1α in vitro. Oncol Rep. 2016 Jul;36(1):428-40. doi: 10.3892/or.2016.4813. | Click |
12 | Combined Treatment of Tanshinone I and Epirubicin Revealed Enhanced Inhibition of Hepatocellular Carcinoma by Targeting PI3K/AKT/HIF-1α. Drug Des Devel Ther. 2022 Sep 19;16:3197-3213. doi: 10.2147/DDDT.S360691. | Click |